Let a = 10nn! for n = 1, 2, 3 . . . then the greatest 

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

321.

Let n = 1! + 4! + 7! + . . . + 400!. Then ten's digit of n is

  • 1

  • 6

  • 2

  • 7


Advertisement

322.

Let a = 10nn! for n = 1, 2, 3 . . . then the greatest  value of n for which a is the greatest is

  • 11

  • 20

  • 10

  • 8


C.

10

Given, an = 10nn!, n = 1, 2, 3 . . . , here we see

that when we increase the value of n like as 1, 2, 3 . . . the value of a, increases but when we reach at n = 9 or 10 the value of an remain unchanged, ie, minor difference in after decimal places and when we cross the value n = 10 ie, n = 11, then we see that the value of a, is monotonically decreasing.

Hence, an have its maximum value at n = 9 or 10.


Advertisement
323.

If (1 + 2x + 3x2)10 = a0 + a1x + a2x2 + . . . + a20x20, then a2a1 = ?

  • 10.5

  • 21

  • 10

  • 5.5


324.

The condition that the x3 - bx2 + cx - d = 0 are in progression is

  • c3 = b3d

  • c2 = b2d

  • c = bd3

  • c = bd2


Advertisement
325.

n = 1 2n2n + 1! = ?

  • 1e

  • e2

  • e

  • 2e


326.

If 12 × 4 + 14 × 6 + 16 × 8 + . . . n terms = knn × 1,then k =?

  • 14

  • 12

  • 1

  • 18


327.

k = 1r = 0k13kCrk = ?

  • 13

  • 23

  • 1

  • 2


328.

1xx + 1x + 2 . . . x + n = A0x + A1x + 1 + Anx + n, 0  i  r  Ar = ?

  •  - 1rr!n - r!

  • - 1rr!n - r!

  •  1r!n - r!

  •  r!n - r!


Advertisement
329.

1 + 13 . 22 + 15 . 24 + 17 . 26 + ... =?

  • loge2

  • loge3

  • loge4

  • loge5


330.

Given that, 2 + 2 + c  0 and that the system of equations

   + bx + ay + bz = 0;    + cx +by +cz = 0; + by +  +cz = 0has a non-trival solution, then a, b and c lie in

  • Arithmetic Progression

  • Geometric Progression

     

  • Harmonic Progression

  • Arithmetico- geometric Progression


Advertisement