Let n = 1! + 4! + 7! + . . . + 400!. Then ten's digit of n is
1
6
2
7
Let a = 10nn! for n = 1, 2, 3 . . . then the greatest value of n for which an is the greatest is
11
20
10
8
If (1 + 2x + 3x2)10 = a0 + a1x + a2x2 + . . . + a20x20, then a2a1 = ?
10.5
21
5.5
The condition that the x3 - bx2 + cx - d = 0 are in progression is
c3 = b3d
c2 = b2d
c = bd3
c = bd2
∑n = 1∞ 2n2n + 1! = ?
1e
e2
e
2e
If 12 × 4 + 14 × 6 + 16 × 8 + . . . n terms = knn × 1,then k =?
14
12
18
A.
Given series can be rewritten as1212 - 14 + 14 - 16 + . . . + 12n - 12n + 2= 141 - 1n + 1= 14nn + 1On compairing given equation, we getk = 14
∑k = 1∞∑r = 0k13kCrk = ?
13
23
1xx + 1x + 2 . . . x + n = A0x + A1x + 1 + Anx + n, 0 ≤ i ≤ r ⇒ Ar = ?
- 1rr!n - r!
1r!n - r!
r!n - r!
1 + 13 . 22 + 15 . 24 + 17 . 26 + ... =?
loge2
loge3
loge4
loge5
Given that, aα2 + 2bα + c ≠ 0 and that the system of equations
aα + bx + ay + bz = 0; bα + cx + by + cz = 0;aα + by + bα + cz = 0has a non-trival solution, then a, b and c lie in
Arithmetic Progression
Geometric Progression
Harmonic Progression
Arithmetico- geometric Progression