The coefficient of x5 in the expans

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

351.

The product and sum of the roots of the equation x2 - 5x - 24 = 0 are respectively

  • - 64, 0

  • - 24, 5

  • 5, - 24

  • 0, 72


352.

The coefficient of x in the expansion of (1 - x + x2 - x3)4 is

  • 31

  • 30

  • 25

  • - 14


353.

ln ABC, if the sides a, b, c are in geometric progression and the largest angle exceeds the smallest angle by 60°, then cos(B) is equal to

  • 13 + 14

  • 1 - 134

  • 1

  • 13 - 14


Advertisement

354.

The coefficient of x5 in the expansion of(1 + x)21 + (1 +x)22 + ... + (1 + x)30 is

  • C631 - C621

  • C551

  • C59

  • C530 + C520


A.

C631 - C621

We know that, coefficient of x' in the expansion of (1 + x)n is given by Crn Coefficient of x5 in the expansion of1 + x21 + 1 + x22 + ... + 1 + x30= C521 + C522 +  ... + C530= C621 + C521 + C522 +   + C530 - C621     Crn + Cr - 1n = Crn + 1= C623 + C523 +   + C530 - C621 ---------------------------------------------------= C630 + C530 - C621 = C631 - C621  


Advertisement
Advertisement
355.

If the roots of the equation x2 -7x2 + 14x - 8 = 0 are in geometric progression, then the difference between the largest and the smallest roots is

  • 4

  • 2

  • 12

  • 3


356.

p, x1, x2 , ..., xn and q, y1, y2, ..., yn are two arithmetic progressions with common differences a and b respectively. If α and β are the arithmetic means of x1, x2, ..., xn and y1, y2, ..., yn respectively. Then the locus of P α, β is

  • ax - p = by - q

  • b(x - p) = a(y - q)

  • αx - p = βy - q

  • px - α = qy - β


357.

The sum of the n terms of 12 . 5 + 15 . 8 +18 . 11 + ... is

  • 3n23n + 2

  • 3n3n + 2

  • n23n + 2

  • n3n + 2


358.

If x = 1 . 33 . 6 + 1 . 3 . 53 . 6.  9 + 1 . 3 . 5 . 73 . 6.  9 . 12 + ... to infinite terms, then 9x2 + 24x = ?

  • 31

  • 11

  • 41

  • 21


Advertisement
359.

The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in

  • - , - 3  9, 

  •  - , - 9  3, 

  • - 3, 

  •  - , 9


360.

If |x| < 1, |y| < 1 and x  y, then the sum to infinity of the following series (x + y) + (x2 + xy + y2) + (x+ x2y + xy2 + y3) + ..... is :

  • x +y + xy1 - x1 - y

  • x + y - xy1 - x1 - y

  • x + y - xy1 - x1 + y

  • x + y + xy1 + x1 + y


Advertisement