Important Questions of Sets Mathematics | Zigya

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement
201.

If f (x) = log10x2. The set of all values of x for which f(x) is real, is

  • [- 1, 1]

  • [1, )

  • (- , - 1]

  • (- , - 1]  [1, )


202.

The solution set contained in R of the inequation

3 + 31 - x - 4 < 0, is:

  • (1, 3)

  • (0, 1)

  • (1, 2)

  • (0, 2)


203.

If f(x) = x, if - 3 < x  - 1x, if - 1 < x <1x,   if 1  x < 3 then the set x : fx  0 is equal to

  • (- 1, 3)

  • [- 1, 3)

  • (- 1, 3]

  • [- 1, 3)


204.

x  R : x - x = 5 is equal to

  • R, the set of all real numbers

  • ϕ, the empty set

  • x  x < 0

  • x  R : x  0


Advertisement
205.

If N denotes the set of all positive integers and if f : N  N efined by f(n) = the sum of positive divisors of n then, f(2k, 3), where k is a positive integers, is

  • 2k + 1 - 1

  • 2(2k + 1 - 1)

  • 3(2k + 1 - 1)

  • 4(2k + 1 - 1)


206.

If f : R  R is defined by f(x)=x - [ x] - 12 for x  R, where [x] is the greatest mteger not exceeding x, then x  R : fx = 12 is equal to :

  • Z, the set of all integers

  • N, the set of all natural numbers

  • ϕ, the empty set

  • R


207.

If Q denotes the set of all rational numbers and fpq = p2 - q2 for any pq  Q, then observe the following statements.I. fpq is real for each pq  QII. fpq is  a complex number for each  pq  Q.Which of the following is correct ?

  • Both I and II are true

  • I is true, II is false

  • I is false, II is true

  • Both I and II are false


208.

The number of subsets of {1, 2, 3, . . . , 9} containing at least one odd number is

  • 324

  • 396

  • 496

  • 512


Advertisement
209.

If a set A has 5 elements, then the number of ways of selecting two subsets P and Q from A such that P and Q are mutually disjoint, is

  • 64

  • 128

  • 243

  • 729


210.

Let N be the set of all natural numbers, Z be
the set of all integers and σ : N  Z be defined by

σn = n2, if n is even- n - 12, if n is odd. Then,

  • σ is onto but not one-one

  • σ is one-one but not onto

  • σ  is neither one-one nor onto

  • σ is one-one and onto


Advertisement