Two stations due south of a leaning tower which leans towards th

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

41. A round balloon of radius r subtends an angle α at the eye of the observer while the angle of elevation of its centre is β. Prove that the height of the centre of the balloon is r sin β . cosec α/2.
3368 Views

 Multiple Choice QuestionsLong Answer Type

42. If the angle of elevation of a cloud from a point h metres above a lake is α and the angle of depression of its reflection in the lake be β. Prove that the distance of the cloud from the point of observer is  fraction numerator 2 straight h space sec space straight alpha over denominator tan space straight beta space minus space tan space straight alpha end fraction.
1314 Views

43. From an aeroplane vertically above a straight horizontal road, the angles of depression of two consecutive stones on opposite sides of the aeroplane are observed to be α and β. Show that the height in miles of aeroplane above the road is given by  fraction numerator tan space straight alpha space. space tan space straight beta over denominator tan space straight alpha space plus space tan space straight beta end fraction.
659 Views

44. From the top of a lighthouse the angle of depression of two ships on the opposite sides of it are observed to be α and β. If the height of the light house be h metres and the line joining the ships passes through the foot of the lighthouse. Show that the distance

 between the ship is fraction numerator straight h left parenthesis tan space straight alpha space plus space tan space straight beta right parenthesis over denominator tan space straight alpha space minus space tan space straight beta end fraction metres.
2168 Views

Advertisement
45. A ladder rests against a wall at an angle α to the horizontal, its foot is pulled away from the wall through a distance a, so that it slides a distance b down the wall making an angle β with the horizontal. Show that  straight a over straight b equals fraction numerator cos space straight alpha space minus space cos space straight beta over denominator sin space straight beta space minus space sin space straight alpha end fraction.
574 Views

46. From a window h metres above the ground) of a house in a street, the angles of elevation and depression of the top and the foot of another house on the opposite side of the street are ө and φ respectively. Show that the height of the opposite house is h ( 1 + tan ө. cot φ).
2122 Views

47. From the top of a tower the angles of depression of two objects on the same side of the tower are found to be α and β (α > β). If the distance between the objects is p metres,

show that the height It of the tower is given by h = fraction numerator straight p space tan space straight alpha. space tan space straight beta over denominator tan space straight alpha space minus space tan space straight beta end fraction Also, determine the height of the tower if p = 50 metres, α = 60°, β = 30°.
1906 Views

48. The angle of elevation of a cliff from a fixed point is ө. After going up a distance of K metres towards the top of the cliff at an angle of φ, it is found that the angle of elevation

is α. Show that the height of the cliff is  fraction numerator straight k left parenthesis cos space straight phi space minus space sin space straight phi. space cot space straight alpha right parenthesis over denominator cot space straight theta space minus space cot space straight alpha end fraction.
596 Views

Advertisement
Advertisement

49. Two stations due south of a leaning tower which leans towards the north are at distances a and b from its foot. If, α, β, are the elevations of the top of the tower from these stations,

prove that its inclination ө to the horizontal is given by cot  straight theta space equals space fraction numerator straight b space cot space straight phi space minus space straight a space cot space straight beta over denominator straight b space minus straight a space end fraction


Let CE be the leaning tower. Let A and B be two given stations at distances a and b respectively from the foot of the tower.
Let CD = x and DE = h
In right triangle CDE, we have

tan space straight theta space equals space DE over CD
rightwards double arrow space space tan space straight theta space space equals space straight h over straight x

Let CE be the leaning tower. Let A and B be two given stations at dis
rightwards double arrow space space straight x space equals space fraction numerator straight h over denominator tan space straight theta end fraction equals straight h space cot space straight theta space space space space space space space space space space space space space space space space space... left parenthesis straight i right parenthesis
In right triangle BDE, we have

tan space straight alpha space space equals space DE over BD
rightwards double arrow space space tan space straight alpha space equals space fraction numerator DE over denominator BC plus CD end fraction
rightwards double arrow space space tan space straight alpha space equals space space fraction numerator straight h over denominator straight a plus straight x end fraction
rightwards double arrow space space straight a space plus space straight x space equals space fraction numerator straight h over denominator tan space straight alpha end fraction
rightwards double arrow space space space straight a space plus space straight x space equals space straight h space cot space straight alpha
rightwards double arrow space space space space straight x space equals space straight h space cot space straight alpha space minus space straight a space space space space space space space space space space space space space space space space space space space space space space space space... left parenthesis ii right parenthesis
In right triangle ADE, we have

tan space straight beta space equals space DE over AD
rightwards double arrow space tan space straight beta space equals space fraction numerator DE over denominator AC plus CD end fraction
rightwards double arrow space space tan space straight beta space equals space fraction numerator straight h over denominator straight b plus straight x end fraction
rightwards double arrow space space straight b plus straight x equals fraction numerator straight h over denominator tan space straight beta end fraction
rightwards double arrow space space straight b plus straight x equals space straight h space cot space straight beta
rightwards double arrow space space straight x space equals space straight h space cot space straight beta space minus space straight b space space space space space space space space space space space... left parenthesis iii right parenthesis
Comparing (i) and (ii), we get

straight h space cot space straight theta space equals space straight h space cot space straight alpha space minus space straight a
rightwards double arrow space straight h space cot space straight alpha space minus space straight h space cot space straight theta space equals space straight a
rightwards double arrow space straight h space left parenthesis cot space straight alpha space minus space cot space straight theta right parenthesis space equals space straight a
straight h space equals space fraction numerator straight a over denominator cot space straight alpha space minus space cot space straight theta end fraction space space space space space space space space space space space space space space space space space space space space space... left parenthesis iv right parenthesis

Comparing (i) and (iii), we get

straight h space cot space straight theta space equals space straight h space cot space straight beta space minus space straight b
rightwards double arrow space straight h space cot space straight beta space minus space straight h space cot space straight theta space equals space straight b
rightwards double arrow space straight h space left parenthesis cot space straight beta space minus space cot space straight theta right parenthesis space equals space straight b
straight h space equals space fraction numerator straight b over denominator cot space straight beta space minus space cot space straight theta end fraction space space space space space space space space space space space space space space space space space space... left parenthesis straight v right parenthesis

Comparing (iv) and (v), we get

fraction numerator straight a over denominator cot space straight alpha space minus space cot space straight theta end fraction space equals space fraction numerator straight b over denominator cot space straight beta minus cot space straight theta end fraction

rightwards double arrow space space straight a left parenthesis cot space straight beta space minus space cot space straight theta right parenthesis space equals space straight b left parenthesis cot space straight alpha space minus space cot space straight theta right parenthesis
rightwards double arrow space space straight a left parenthesis cot space straight beta space minus space straight a space cot space straight theta right parenthesis space equals space straight b space cot space straight alpha space minus space straight b space cot space straight theta
rightwards double arrow space space straight b space cot space straight theta space minus straight a space cot space straight theta space equals straight b space cot space straight alpha space minus space straight a space cot space straight beta
rightwards double arrow space cot space straight theta space left parenthesis straight b minus straight a right parenthesis space equals space straight b space cot space straight alpha minus space straight a space cot space straight beta
rightwards double arrow space space space space space space space cot space straight theta space equals space fraction numerator straight b space cot space straight alpha space minus space straight a space cot space straight beta over denominator straight b minus straight a end fraction
Hence, inclination ө to the horizontal is given by cot straight theta space equals space fraction numerator straight b space cot space straight alpha space minus space straight a space cot space straight beta over denominator straight b minus straight a end fraction


783 Views

Advertisement
50. A pole 5 m high is fixed on the top of a tower. The angle of elevation of the top of the pole observed from a point A on the ground is 60° and the angle of depression of the point A from the top of the tower is 45°. Find the height of the tower.
155 Views

Advertisement