Show that the line joining the middle points of two sides of a t

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

101.

Find the area of the triangle whose vertices are (1, 2, 4), (-2, 1, 2), (2, 4, -3).

74 Views

 Multiple Choice QuestionsLong Answer Type

102. A line makes angle α, β, γ and δ with the diagonals of a cube, prove that
cos squared straight alpha space plus space cos squared straight beta space plus space cos squared straight gamma space space plus cos squared straight delta space equals space 4 over 3.
727 Views

103. If the edges of a rectangular parallelepiped are a, b, c, show that the angles between four diagonals are given by cos–1open parentheses fraction numerator straight a squared plus-or-minus straight b squared plus-or-minus straight c squared over denominator straight a squared plus straight b squared plus straight c squared end fraction close parentheses.
365 Views

104. Find the angle between two diagonals of a cube.
151 Views

Advertisement
Advertisement

105. Show that the line joining the middle points of two sides of a triangle is parallel to the third side and half of it in length.


Let A (x1 , y1, z1). B (x2, y2, z2), C (x3, y3, z3) be the vertices of Δ ABC and D, E, F be mid-points of BC, CA and AB respectively.
             therefore space space space straight E space is space open parentheses fraction numerator straight x subscript 3 plus straight x subscript 1 over denominator 2 end fraction comma space fraction numerator straight y subscript 3 plus straight y subscript 1 over denominator 2 end fraction comma space fraction numerator straight z subscript 3 plus straight z subscript 1 over denominator 2 end fraction close parentheses
and straight F space is space open parentheses fraction numerator straight x subscript 1 plus straight x subscript 2 over denominator 2 end fraction comma space fraction numerator straight y subscript 1 plus straight y subscript 2 over denominator 2 end fraction comma space fraction numerator straight z subscript 1 plus straight z subscript 2 over denominator 2 end fraction close parentheses

Direction-ratios of BC are
x3 – x2, y3 – y2, z3 – z2.
Directions-ratios of FE are
          fraction numerator straight x subscript 3 plus straight x subscript 1 over denominator 2 end fraction minus fraction numerator straight x subscript 1 plus straight x subscript 2 over denominator 2 end fraction comma space space fraction numerator straight y subscript 3 plus straight y subscript 1 over denominator 2 end fraction minus fraction numerator straight y subscript 1 plus straight y subscript 2 over denominator 2 end fraction comma space space fraction numerator straight z subscript 3 plus straight z subscript 1 over denominator 2 end fraction minus fraction numerator straight z subscript 1 plus straight z subscript 2 over denominator 2 end fraction

or        fraction numerator straight x subscript 3 minus straight x subscript 2 over denominator 2 end fraction comma space space fraction numerator straight y subscript 3 minus straight y subscript 2 over denominator 2 end fraction comma space space fraction numerator straight z subscript 3 minus straight z subscript 2 over denominator 2 end fraction

or      straight x subscript 3 minus straight x subscript 2 comma space space straight y subscript 3 minus straight y subscript 2 comma space space straight z subscript 3 minus straight z subscript 2

which are the same as that of BC
∴    FE || BC.
Also,
 FE space equals space square root of open parentheses fraction numerator straight x subscript 3 plus straight x subscript 1 over denominator 2 end fraction minus space fraction numerator straight x subscript 1 plus straight x subscript 2 over denominator 2 end fraction close parentheses squared plus open parentheses fraction numerator straight y subscript 3 plus straight y subscript 1 over denominator 2 end fraction minus fraction numerator straight y subscript 1 plus straight y subscript 2 over denominator 2 end fraction close parentheses squared space plus space open parentheses fraction numerator straight z subscript 3 plus straight z subscript 1 over denominator 2 end fraction minus fraction numerator straight z subscript 1 plus straight z subscript 2 over denominator 2 end fraction close parentheses squared end root
space space space space space equals space 1 half square root of left parenthesis straight x subscript 3 minus straight x subscript 2 right parenthesis squared plus left parenthesis straight y subscript 3 minus straight y subscript 2 right parenthesis squared plus left parenthesis straight z subscript 3 minus straight z subscript 2 right parenthesis squared end root space equals space 1 half BC
Hence the result. 

92 Views

Advertisement
106. A variable line in two adjacent positions has direction cosines < l, m, n > and < l + δl, m + δm, n + δn >. Show that the small angle δθ between two positions is given by
(δθ )2 = (δl)2 + (δm)2 + (δn)2
119 Views

107.

Find the angle between the two lines whose direction cosines are given by the equations:
l + m + n = 0,           l2 + m2 – n2 = 0

101 Views

108. Find the angle between the two lines whose direction cosines are given by the equations:
2 l – m + 2 n = 0 and m n + n l + l m = 0
281 Views

Advertisement
109. Find the angle between the two lines whose direction cosines are given by the equations:
l + m + n = 0 and 2 l + 2 m – m n = 0
115 Views

110. Show that the straight lines whose direction cosines are given by the equations uI + vm + wn = 0, a I2 + b m2 + cn2 = 0 are 
(i) perpendicular if u2 (b + c) + v2 (c + a) + w2 (a + b) = 0
(ii) parallel if straight u squared over straight a plus straight v squared over straight b plus straight w squared over straight c equals 0.

176 Views

Advertisement