Find the angle between the two lines whose direction cosines are given by the equations:
l + m + n = 0, l2 + m2 – n2 = 0
∴ l1 l2 = k (b w2 + c v2), m1 m2 = k (c u2 + a w2), n1 n2 = k (a v2 + b u2)
∴ l1 l2 + m1 m2 + n1 n2 = k [b w2'+ cv2 + c u2 + a w'2 + a v2 + b u2]
∴ lines are perpendicular
If k (b w2 + cv2 + c u2 + a w2 + a v2 + b u2] = 0 [∵ of (4)]
i.e., if b w2 + c v2 + c u2 + a w2 + a v2 + b u2 = 0
i.e., if u2 (b + c) + v2 (c + a) + w2 (a + b) = 0
(ii) The lines are parallel
if l1 = l2, m1 = m2, n1 = n2
i.e., if
i.e., if equation (3) has equal roots
i.e., if disc = 0
i.e., if 4 c2 u2 v2 – 4 (a w2 + c u2) (b w2 + c v2) = 0
i.e., lf c2 u2 v2 – a bw4 – acv2 w2 –bcu2 W – c2 u2 v2= 0
i.e., if – a b w4 – a c v2 w2 – b c u2 w2 = 0
i.e., if a b w2 + a c v2 + b c u2 = 0 [Dividing by – w2]
i.e, if
i.e., if