174.
A plane meets the co-ordinate axes at A, B, C such that the centroid of the triangle ABC is the point (1, – 2, 3). Show that the equation of the plane is 6x-3y + 2z= 18.
Let the equation of plane be
...(1)
It meets the x-axis in A where y = 0, z = 0
Putting y = 0 , z = 0 in (1), we get, ![straight x over straight a equals 1 comma space space space space space space space therefore space space straight x space equals straight a](/application/zrc/images/qvar/MAEN12064749-1.png)
∴ A is (a, 0, 0)
Similarly B, C are (0, b, 0), (0, 0, c) respectively.
∵ (1, – 2, 3) is centroid of triangle ABC
![therefore space space fraction numerator straight a plus 0 plus 0 over denominator 3 end fraction equals space space 1 comma space space space fraction numerator 0 plus straight b plus 0 over denominator 3 end fraction space equals space minus 2 comma space space space space fraction numerator 0 plus 0 plus straight c over denominator 3 end fraction space equals 3](/application/zrc/images/qvar/MAEN12064749-2.png)
![therefore space space space space space straight a space equals space 3 comma space space straight b space equals negative 6 comma space space straight c space equals 9](/application/zrc/images/qvar/MAEN12064749-3.png)
Putting values of a, b, c in (1), we get, ![straight x over 3 plus fraction numerator straight y over denominator negative 6 end fraction plus straight z over 9 space equals space 1](/application/zrc/images/qvar/MAEN12064749-4.png)
or 6 x – 3 y + 2 z = 18, which is required equation.
89 Views