176.
Find the vector equation of the following planes in scalar product form:
![straight r with rightwards arrow on top space equals space straight i with hat on top space minus space straight j with hat on top space plus space straight lambda open parentheses straight i with hat on top space plus space straight j with hat on top space plus space straight k with hat on top close parentheses space plus space straight mu space open parentheses straight i with hat on top space minus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top close parentheses](/application/zrc/images/qvar/MAEN12064756.png)
The equation of plane is ![straight r with rightwards arrow on top space equals space straight i with hat on top space space minus space straight j with hat on top space plus space straight lambda open parentheses straight i with hat on top space plus space straight j with hat on top space plus space straight k with hat on top close parentheses space plus space straight mu space open parentheses straight i with hat on top space minus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top close parentheses](/application/zrc/images/qvar/MAEN12064756-1.png)
or ![straight x straight i with hat on top space space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top space equals space open parentheses 1 plus straight lambda space plus space straight mu close parentheses space straight i with hat on top space plus space open parentheses negative 1 plus straight lambda space minus space 2 space straight mu close parentheses straight j with hat on top space plus space open parentheses straight lambda plus space 3 space straight mu close parentheses space straight k with hat on top](/application/zrc/images/qvar/MAEN12064756-2.png)
Equating the coefficients of
we get,
x = 1 + λ + μ ....(1)
y = – 1 + λ – 2 μ ...(2)
z = λ + 3 μ ...(3)
We are to eliminate λ and μ from (1), (2), (3).
Subtracting (2) from (1), we get,
x – y = 2 + 3 μ ... (4)Subtracting (3) from (1), we get,
x – z = 1 – 2 μ ... (5)
Multiplying (4) by 2 and (5) by 3 , we get,
2 x – 2 y = 4 + 6 μ ...(6)
3 x – 3 z = 3 – 6 μ ...(7)
Adding (6) and (7), we get, 5 x – 2 y – 3 z = 7This can be written as ![open parentheses straight x space straight i with hat on top space plus space straight y space straight j with hat on top space plus space straight z space straight k with hat on top close parentheses. space open parentheses 5 space straight i with hat on top space space minus space 2 space straight j with hat on top space minus space 3 space straight k with hat on top close parentheses space equals space 7](/application/zrc/images/qvar/MAEN12064756-4.png)
or
![straight r with rightwards arrow on top. space open parentheses 5 space straight i with hat on top space minus space 2 space straight j with hat on top space minus space 3 space straight k with hat on top close parentheses space equals space 7](/application/zrc/images/qvar/MAEN12064756-5.png)
which is the required equation.
74 Views