Find the angle between the two planes3 x – 6 y + 2 z = 7 and 2

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

181. Find the vector equation of the line through the origin which is perpendicular to the plane straight r with rightwards arrow on top. space open parentheses straight i with hat on top space minus space 2 space straight j with hat on top space plus space straight k with hat on top close parentheses space equals space 3.
89 Views

182. Find the vector and cartesian equations of the planes:
that passes through the point (1, 0, – 2) and the normal to the plane is straight i with hat on top space plus space straight j with hat on top space minus space straight k with hat on top.
81 Views

183. Find the vector and cartesian equations of the planes:
that passes through the point (1, 4, 6) and the normal vector to the plane is straight i with hat on top space minus space 2 space straight j with hat on top space plus space straight k with hat on top.
77 Views

 Multiple Choice QuestionsLong Answer Type

184. Find the vector equation of the line passing through the point (3, 1, 2) and perpendicular to the plane straight r with rightwards arrow on top. space open parentheses 2 straight i with hat on top space minus space straight j with hat on top space plus space straight k with hat on top close parentheses space equals space 4. Find also the point of intersection of this line and plane. 
85 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

Advertisement

185. Find the angle between the two planes
3 x – 6 y + 2 z = 7 and 2 x + 2 y – 2 z = 5.


The equations of given planes are
3 x – 6 + 2 z = 7
and 2 x + 2 y – 2 z = 5
∴  a1 = 3, b1 = – 6, c1 = 2
and a2 = 2, b2 = 2, c2 = – 2
Now,      
             cos space straight theta space equals space open vertical bar fraction numerator straight a subscript 1 straight a subscript 2 plus straight b subscript 1 straight b subscript 2 plus straight c subscript 1 straight c subscript 2 over denominator square root of straight a subscript 1 squared plus straight b subscript 1 squared plus straight c subscript 1 squared end root space square root of straight a subscript 2 squared plus straight b subscript 2 squared plus straight c subscript 2 squared end root end fraction close vertical bar
space space space space space space space space space space equals open vertical bar fraction numerator left parenthesis 3 right parenthesis thin space left parenthesis 2 right parenthesis space plus left parenthesis negative 6 right parenthesis thin space left parenthesis 2 right parenthesis space plus space left parenthesis 2 right parenthesis thin space left parenthesis negative 2 right parenthesis over denominator square root of left parenthesis 3 right parenthesis squared plus left parenthesis negative 6 right parenthesis squared plus left parenthesis 2 right parenthesis squared end root space square root of left parenthesis 2 right parenthesis squared plus left parenthesis 2 right parenthesis squared plus left parenthesis negative 2 right parenthesis squared end root end fraction close vertical bar
space space space space space space space space space space equals open vertical bar fraction numerator 6 minus 12 minus 4 over denominator square root of 9 plus 36 plus 4 end root space square root of 4 plus 4 plus 4 end root end fraction close vertical bar space equals space open vertical bar fraction numerator negative 10 over denominator square root of 49 space square root of 12 end fraction close vertical bar
space space space space space space space space space space space equals space fraction numerator 10 over denominator 7 cross times 2 square root of 3 end fraction space equals fraction numerator 5 over denominator 7 square root of 3 end fraction space equals fraction numerator 5 square root of 3 over denominator 21 end fraction
therefore space space space space straight theta space equals space cos to the power of negative 1 end exponent open parentheses fraction numerator 5 square root of 3 over denominator 21 end fraction close parentheses.

87 Views

Advertisement
186. Find the angle between the two planes
2 x + y – 2 z = 5 and 3x – 6 y – 2 z = 7 using vector method.
76 Views

187. Find the angle between the planes whose vector equations are
straight r with rightwards arrow on top. space open parentheses 2 straight i with hat on top space plus space 2 straight j with hat on top space minus space 3 straight k with hat on top close parentheses space equals space 5 space space space and space straight r with rightwards arrow on top. space open parentheses 3 straight i with hat on top space minus space 3 straight j with hat on top space plus space 5 straight k with hat on top close parentheses space equals space 3.
78 Views

188. Find the angle between the planes whose vector equations are
straight r with rightwards arrow on top. space open parentheses straight i with hat on top space plus space straight j with hat on top space minus space 2 space straight k with hat on top close parentheses space equals space 3 space space and space space space straight r with rightwards arrow on top. space space open parentheses 2 straight i with hat on top space minus space 2 straight j with hat on top space plus space straight k with hat on top close parentheses space equals space 2
80 Views

Advertisement
189. Find the angle between the planes
straight r with rightwards arrow on top. space open parentheses 3 space straight i with hat on top space minus space 4 space straight j with hat on top space plus space 5 space straight k with hat on top close parentheses space equals space 0 space space and space straight r with rightwards arrow on top. space space left parenthesis 2 straight i with hat on top space minus space straight j with hat on top space minus space 2 space straight k with hat on top right parenthesis space equals space 0

76 Views

190. In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them:
7x + 5y + 6z + 30 = 0 and 3x – y – 10z + 4 = 0

87 Views

Advertisement