The coordinates of foot of perpendicular drawn from the origin on

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

661.

The ratio in which the xy-plane divides the join of (a, b, c) and (- a, - c, - b), is

  • a : b

  • b : c

  • c : a

  • c : b


662.

Lines x - 21 = y - 31 = z - 4- k and x - 1k = y - 42 = z - 51 will be coplanar, if

  • k = 0 or - 1

  • k = 1 or - 1

  • k = 0 or - 3

  • k = 3 or - 3


663.

The equation of the plane containing the line

x - x1l = y - y1m = z - z1n is

a(x - x1) + b(y - y1) + c(z - z1) = 0, where

  • ax1 + by1 + cz1 = 0

  • al + bm + cn = 0

  • al + bm + cn

  • lx1 + my1 + nz1 = 0


664.

Distance between the is x - 13 = y + 2- 2 = z - 12 and the plane 2x + 2y - z = 6, is

 

  • 9 unit

  • 1 unit

  • 2 unit

  • 3 unit


Advertisement
665.

If (1, 1, 1), (1, - 1, 1), (- 7, - 3, - 5) and (p, 2, 3) are coplanar, then the value of p will be

  • 5

  • 3

  • 2

  • None of these


666.

If u, v, ware three non-coplanar vectors, then (u + v - w){(u - v) x (v - w)} is equal to

  • u . v × w

  • v . u × w

  • w . u × v

  • 0


667.

If the vectros  i^ - 3j^ + 2k^- i^ + 2j^ represents the diagonals ofa parallelogram, then its area will be

  • 21 sq unit

  • 212 sq unit

  • 221 sq unit

  • 214 sq unit


668.

If ABCD is a parallelogram. AB = 2i^ + 4j^ - 5k^ and AD = i^ + 2j^ + 3k^, then unit vector in the direction of BD is

  • 169i^ + 2j^ - 8k^

  • 169i^ + 2j^ - 8k^

  • 169- i^ - 2j^ + 8k^

  • 169- i^ - 2j^ + 8k^


Advertisement
Advertisement

669.

The coordinates of foot of perpendicular drawn from the origin on the line formed by joining the points (- 9, 4, 5)and (10, 0, - 1), are

  • (- 3, 2, 1)

  • (1, 2, 2)

  • (4, 5, 3)

  • None of these


D.

None of these

Let the perpendicular drawn from the origin to the line formed by joining the points A(- 9, 4, 5) and B(10, 0, - 1) divide in the ratio λ : 1.

 Coordinates of points Q areλ + 10 - 9λ + 1, 0 × λ + 4λ + 1, - 1 × λ + 5λ + 1i.e., 10λ - 9λ + 1, 4λ + 1, - λ + 5λ + 1  Direction ratios of PQ are10λ - 9λ + 1, 4λ + 1, - λ + 5λ + 1and direction ratios of AB are ( 19, - 4, - 6). PQ  AB 1910λ - 9λ + 1 - 44λ + 1 - 6- λ + 5λ + 1 = 0 190λ - 171 - 16 + 6λ - 30 = 0 196λ = 217       λ = 217196 Coordinates of foot of the perpendicular are 5859, 11259, 10959.


Advertisement
670.

If the direction cosines of two lines are represented by l + m + n = 0 and 2lm + 2nl - mn = 0, then the angle between these lines will be

  • π3

  • 2π3

  • π

  • None of these


Advertisement