The equation of the plane passing through the intersection ofthe

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

681.

If a, b c are coplanar vectors, then which of the following is not correct ?

  • a . b × c = 0

  • a × b × c = 0

  • [a + b, b + c, c + a] = 0

  • a = pb + qc


682.

Find the equation of plane through the line x - 22 = y - 33 = z - 45 and parallel to X-axis.

  • 2x + 3y + 5z = 1

  • 2x - 3z - 3 = 0

  • 5y - 3z - 3 = 0

  • 3y + 4z = 0


683.

The value of 'λ', so that the vectors i^ - 3j^ + k^2i^ + λj^ + k^ and 3i^ + j^ - 2k^ are coplanar, will be

  • 0

  • 2

  • - 12

  • - 4


684.

The line passing through the point (- 1, 2 3) and perpendicular to the plane x - 2y + 3z+ 5 = 0 will be

  • x + 11 = y - 23 = z - 35

  • x + 11 = y - 23 = z + 33

  • x + 11 = y - 23 = z - 32

  • x + 11 = y - 2- 2 = z - 33


Advertisement
685.

The value of k, if the line x - 41 = y - 21 = z - k1 lies on the plane 2x - 4y + z = 7, will be

  • 5

  • 7

  • 9

  • 11


686.

If the line of intersection of the planes 2x + 3y + z = 1 and x + 3y + 2 = 2 makes angle α with positive direction of x  axis, then cosα will be equal to

  • 12

  • 15

  • 17

  • 13


687.

Value of a for which the vectors (2, - 1, 1) (1, 2, - 3) and (3, a, 5) become coplanar will be

  • 4

  • - 4

  • no such exists

  • None of these


688.

If l , m, n are the DC's of a line, then

  • l2 + m2 + n2 = 0

  • l2 + m2 + n2 = 1

  • l + m + n = 1

  • l = m = n = 1


Advertisement
689.

The length of the perpendicular from the point (1 2, 3) on the line x - 63 = y - 72 = z - 7- 2 is

  • 3 units

  • 4 units

  • 5 units

  • 7 units


Advertisement

690.

The equation of the plane passing through the intersection ofthe planes 2x - 3y + z - 4 = 0 and x - y + z + 1 = 0 and perpendicular to the plane x + 2y - 3z + 6 = 0 is

  • x - 5y + 3z - 23 = 0

  • x - 5y - 3z - 23 = 0

  • x + 5y - 3z + 23 = 0

  • x - 5y + 3z + 23 = 0


B.

x - 5y - 3z - 23 = 0

The equation of a plane passing through the intersection of the planes 2x - 3y + z - 4 = 0 and x - y + z + 1 = 0 is

            2x - 3y + z - 4 + λx - y + z + 1 = 0 2 + λx + - 3 - λy + 1 + λz + λ - 4 = 0But plane (i) is perpendicular to the plane x + 2y - 3z + 6 = 0. 2 + λ1 + - 3 - λ2 + 1 + λ- 3 = 0 2 + λ - 6 - 2λ - 3 - 3λ = 0 - 4λ - 7 = 0               λ = - 74utting this value of λ = - 74, in Eq. (i),we get the required equation of plane2 - 74x + - 3 + 74y + 1 - 74z + - 4 - 74 = 0 x - 5y - 3z - 23 = 0


Advertisement
Advertisement