The three lines of a triangle are given by (x2 - y2)(2x + 3y - 6)

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

701.

The angle between the lines x - 23 = y + 1- 2; z= 2 and x - 11 = 2y + 33; z +52 is

  • π3

  • π6

  • π2

  • π4


702.

The angle between planes 2x - y + z = 6 and x + y + 2z = 8 is

  • 30°

  • 60°

  • cos-132

  • sin-132


703.

Equation of a plane passing through (- 1, 1, 1) and (1, - 1, 1) and perpendicular to x + 2y + 2z = 5 is

  • 2x + 3y - 3z + 3 = 0

  • x + y + 3z - 5 = 0

  • 2x+ 2y - 3z + 3 = 0

  • x + y + z - 3 = 0


704.

The position vectors of three non-collinear points A, Band C are a, b and c, respectively. The perpendicular distance of point C from the straight line AB is

  • b × cb - c

  • a × bb - a

  • c × ac - a

  • b × c + c × a + a × bb - a


Advertisement
705.

If A(- 1, 3, 2),B (2, 3, 5) and C(3, 5, - 2) are vertices of a ABC, then angles of ABC are

  • A = 90°, B = 30°, C = 60°

  • A = B = C = 90°

  • A = B = 45°, C = 90°

  • None of the above


706.

If a, band care three non-coplanar vectors, then [a x b b x c c x a] is equal to

  • [a b c]3

  • [a b c]2

  • 0

  • None of these


707.

Image point of (1, 3, 4) in the plane 2x - y + z + 3 = 0 will be

  • (3, 5, 2)

  • (3, 5, - 2)

  • (- 3, 5, 2)

  • None of these


708.

Distance of the point (2, 3, 4) from the plane 3x - 6 y + 2z + 11 = 0 is

  • 0

  • 1

  • 2

  • 3


Advertisement
Advertisement

709.

The three lines of a triangle are given by (x2 - y2)(2x + 3y - 6) = 0. If the point (- 2, λ) lies inside and (μ, 1) lies outside the triangle, then

  • λ  1, 103, μ  - 3, 5

  • λ  2, 103, μ  - 1, 1

  • λ  - 1, 92, μ  - 2, 103

  • None of the above


D.

None of the above

Three lines of triangle are given by

x2 - y22x +3y - 6 = 0 x - yx +y2x +3y - 6 = 0 The three Iines of triangle are x - y = 0, x + y = 0and 2x + 3y - 6 = 0

From given Iines of triangle, the required OAB is formed. - 2, λ lies inside the tnangle 2- 2 + 3λ - 6 < 0 and  - 2 + λ > 0 - 4 +3λ - 6 < 0 and  λ > 2 3λ < 10 and λ > 2   λ < 103 and λ >2   λ  2, 103Now, μ, 1 ) lies outside the triangle.To find value of µ, we find the interval[M, N] for values of x.x + 1  0 and x  -1  0 x  - 1 and x  1 x  - 1, 1 μ lies outside the triangle. μ  - , - 1  1, or μ  R - - 1, 1


Advertisement
710.

A variable plane is at a constant distance p from the origin O and meets the axes at A, B and C. The locus of the centroid of the tetrahedron OABC is

  • 1x2 + 1y2 + 1z2 = 1p2

  • 1x2 + 1y2 + 1z2 = 16p2

  • x2 + y2 + z2 = 16p2

  • x2 + y2 + z2 = p2


Advertisement