A variable plane is at a constant distance p from the origin O an

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

701.

The angle between the lines x - 23 = y + 1- 2; z= 2 and x - 11 = 2y + 33; z +52 is

  • π3

  • π6

  • π2

  • π4


702.

The angle between planes 2x - y + z = 6 and x + y + 2z = 8 is

  • 30°

  • 60°

  • cos-132

  • sin-132


703.

Equation of a plane passing through (- 1, 1, 1) and (1, - 1, 1) and perpendicular to x + 2y + 2z = 5 is

  • 2x + 3y - 3z + 3 = 0

  • x + y + 3z - 5 = 0

  • 2x+ 2y - 3z + 3 = 0

  • x + y + z - 3 = 0


704.

The position vectors of three non-collinear points A, Band C are a, b and c, respectively. The perpendicular distance of point C from the straight line AB is

  • b × cb - c

  • a × bb - a

  • c × ac - a

  • b × c + c × a + a × bb - a


Advertisement
705.

If A(- 1, 3, 2),B (2, 3, 5) and C(3, 5, - 2) are vertices of a ABC, then angles of ABC are

  • A = 90°, B = 30°, C = 60°

  • A = B = C = 90°

  • A = B = 45°, C = 90°

  • None of the above


706.

If a, band care three non-coplanar vectors, then [a x b b x c c x a] is equal to

  • [a b c]3

  • [a b c]2

  • 0

  • None of these


707.

Image point of (1, 3, 4) in the plane 2x - y + z + 3 = 0 will be

  • (3, 5, 2)

  • (3, 5, - 2)

  • (- 3, 5, 2)

  • None of these


708.

Distance of the point (2, 3, 4) from the plane 3x - 6 y + 2z + 11 = 0 is

  • 0

  • 1

  • 2

  • 3


Advertisement
709.

The three lines of a triangle are given by (x2 - y2)(2x + 3y - 6) = 0. If the point (- 2, λ) lies inside and (μ, 1) lies outside the triangle, then

  • λ  1, 103, μ  - 3, 5

  • λ  2, 103, μ  - 1, 1

  • λ  - 1, 92, μ  - 2, 103

  • None of the above


Advertisement

710.

A variable plane is at a constant distance p from the origin O and meets the axes at A, B and C. The locus of the centroid of the tetrahedron OABC is

  • 1x2 + 1y2 + 1z2 = 1p2

  • 1x2 + 1y2 + 1z2 = 16p2

  • x2 + y2 + z2 = 16p2

  • x2 + y2 + z2 = p2


B.

1x2 + 1y2 + 1z2 = 16p2

Let the plane meets the axes at A(a, 0, 0), B(0, b, 0) and C(O, 0, c) Then, equation of plane is

xa + yb + zc = 1

It is given that plane is at a constant distance p from the origin (0, 0, 0).

    p = 0 + 0 - 11a2 + 1b2 + 1c2 1p2 = 1a2 + 1b2 + 1c2

Let α, β, γ be the coordinates of centroid of the formed tetrahedron

Then, α = a + 0 + 0 + 04  a = 4α           β= 0 + b + 0 + 04  b = 4β          γ = 0 + 0 + c +04  c = 4γOn putting values of a,b, c in Eq. (i), we get       1p2 = 14α2 + 14β2 + 14γ2   16p2 = 1α2 + 1β2 + 1γ2 Locus of centroid of tetrahedron is1x2 + 1y2 + 1z2 = 16p2


Advertisement
Advertisement