If (2, - 1, 2) and (K, 3, 5) are the triads of direction ratios of two lines and the angle between them is 45°, then the value of K is
2
3
4
6
The length of perpendicular from the origin to the plane which makes intercepts respectively on the coordinate axes is
5
If the plane 56x + 4y + 9z = 2016 meets the coordinate axes in A, B, C, then the centroid of the ABC is
(12, 168, 224)
(12, 168, 112)
A.
Equation of plane is
56x + 4y + 9z = 2016
this plane meets the coordinate axes in A,B,C.
The equation of the plane through (4,4,0) and perpendicular to the planes 2x + y + 2z + 3 = 0 and 3x + 3y + 2z - 8 = 0
4x + 3y + 3z = 28
4x - 2y - 3z = 8
4x + 2y + 3z = 24
4x +2y - 3z = 24
The plane passing through the points (1, 2, 1), (2, 1, 2) and parallel to the line, 2x = 3y, z = 1 also passes through the point :
(2, 0, - 1)
(0, 6, - 2)
(0, - 6, 2)
(- 2, 0 , 1)
A plane passing through the point (3, 1, 1) contains two lines whose direction ratios are 1, – 2, 2 and 2, 3, – 1 respectively. If this plane also passes through the point(,–3, 5), then is equal to
5
10
- 5
- 10
Let the latus rectum of the parabola y2 = 4x be the common chord to the circles C1 and C2 each of them having radius 25. Then, the distance between the centres of the circles C1 and C2 is :
12
8
The angle of elevation of the top of a hill from a point on the horizontal plane passing through the foot of the hill is found to be 45°. After waling a distance of 80 meters towards the top, up a slope inclined at angle of 30° to the horizontal plane the angle of elevation of the top of the hill becomes 75°. Then the height of the hill (in meters) is _____.