Prove that a line drawn through the mid-point of one side of a t

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

181. In the adjacent figure, if LM || CB and LN || CD, prove that AM over AB equals AN over AD


177 Views

182. In the given figure. DE || AC and DF || AE. Prove that
BF over FE equals BE over EC.

149 Views

183. In the given Fig. DE || OQ and DF || OR. Show that EF || QR.

299 Views

184. In the given fig, A, B and C are points on OP, OQ and OR respectively such that AB || PQ and AC || PR. Show that BC || QR.

220 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

Advertisement

185. Prove that a line drawn through the mid-point of one side of a triangle parallel to another side bisects the third side.



Given a ∆ABC such that D is the mid point of AB and DE || BC.To Pro

Given a ∆ABC such that D is the mid point of AB and DE || BC.
To Prove:              AE  = EC 
Proof:                    AD = DB        (given)
rightwards double arrow                      AD over DB equals 1 space space space space space space space space space space space space space space space space... left parenthesis straight i right parenthesis
In ∆ABC, we have
DE || BC
Therefore, by using Basic proportionality theorem, we have
<pre>uncaught exception: <b>mkdir(): Permission denied (errno: 2) in /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php at line #56mkdir(): Permission denied</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php line 56<br />#0 [internal function]: _hx_error_handler(2, 'mkdir(): Permis...', '/home/config_ad...', 56, Array)
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php(56): mkdir('/home/config_ad...', 493)
#2 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/FolderTreeStorageAndCache.class.php(110): com_wiris_util_sys_Store->mkdirs()
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(231): com_wiris_plugin_impl_FolderTreeStorageAndCache->codeDigest('mml=<math xmlns...')
#4 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(59): com_wiris_plugin_impl_RenderImpl->computeDigest(NULL, Array)
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#6 {main}</pre>
Comparing (i) and (ii), we get
          AE over EC equals 1
rightwards double arrow              space space AE space equals space EC
436 Views

Advertisement
186. Using Theorem 6.2 (N.C.E.R.T.), prove that the line joining the mid-points of any two sides of a triangle is parallel to the third side.

684 Views

 Multiple Choice QuestionsLong Answer Type

187. ABCD is a trapezium in which AB || DC and its diagonals intersect each other at the point O. Show that  AO over BO equals CO over DO.

231 Views

188. The diagonals of a quadrilateral ABCD intersect each other at point O such that AO over BO equals CO over DO.  Show that ABCD is a trapezium.
454 Views

Advertisement
189. State which pairs of triangles in the given Fig, are similar. Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form:


108 Views

 Multiple Choice QuestionsShort Answer Type

190.

In the given fig. ∆ODC ~ ∆OBA, ∠BOC = 125° and ∠CDO = 70°. Find ∠DOC, ∠DCO and ∠OAB.



450 Views

Advertisement