In the given fig., D is a point on hypotenuse AC of ∆ABC, DIM

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

231.

In the given fig, PS is the bisector of ∠QPR of ∆PQR. Prove that QS over SR equals PQ over PR.

467 Views

Advertisement

232.

In the given fig., D is a point on hypotenuse AC of ∆ABC, DIM ⊥ BC and DN ⊥ AB. 
Prove that:
(i) DM2 = DN × MC.
(ii) DN2 = DM × AN.


We have,
AB ⊥ BC and DM ⊥ BC
⇒    AB || DM
Similarly, we have
CB ⊥ AB and DN ⊥ AB
⇒    CB || DN
Hence, quadrilateral BMDN is a rectangle.
∴    BM = ND
(i) In ∆BMD, we have
∠1 + ∠BMD + ∠2 = 180°
⇒ ∠1 + 90° + ∠2 = 180°
⇒    ∠1 + ∠2 = 90°
Similarly, in ∆DMC, we have
∠3 + ∠4 = 90°
Since BD ⊥ AC. Therefore
∠2 + ∠3 = 90°
Now, ∠1 + ∠2 = 90°and ∠2 + ∠3 = 90°
⇒    ∠1 + ∠2 = ∠2 + ∠3
⇒    ∠1 = ∠3
Also, ∠3 + ∠4 = 90° and ∠2 + ∠3 = 90°
⇒    ∠3 + ∠4 = ∠2 + ∠3 ⇒ ∠2 = ∠4
Thus, in ∆'s BMD and DMC, we have
∠1 = ∠3 and ∠2 = ∠4
Therefore, by using AA similar condition
                  increment BMD tilde increment DMC

space space space rightwards double arrow space space space space space space space space space space space space BM over DM equals MD over MC

rightwards double arrow             <pre>uncaught exception: <b>mkdir(): Permission denied (errno: 2) in /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php at line #56mkdir(): Permission denied</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php line 56<br />#0 [internal function]: _hx_error_handler(2, 'mkdir(): Permis...', '/home/config_ad...', 56, Array)
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php(56): mkdir('/home/config_ad...', 493)
#2 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/FolderTreeStorageAndCache.class.php(110): com_wiris_util_sys_Store->mkdirs()
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(231): com_wiris_plugin_impl_FolderTreeStorageAndCache->codeDigest('mml=<math xmlns...')
#4 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(59): com_wiris_plugin_impl_RenderImpl->computeDigest(NULL, Array)
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#6 {main}</pre>     

rightwards double arrow               DM squared space equals space DN cross times MC
 
(ii) Proceeding as in (i), we can prove that
                  increment BND tilde increment DNA
rightwards double arrow space space space space space space space space space space space space space space space space space BN over DN equals ND over NA
rightwards double arrow space space space space space space space space space space space space space space space space DM over DN space equals space DN over AN space left square bracket therefore space space space space BN space equals space DM right square bracket
rightwards double arrow space space space space space space space space space space space space space space space space space space space DN squared space equals space DM space cross times space AN.

706 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

233.

In the given fig., ABC is a triangle in which ∠ABC > 90° and AD ⊥ CB produced. Prove that AC2 = AB2 + BC2 + 2 BC . BD.


386 Views

234.

In the given Fig,  ABC is a triangle in which ∠ABC < 90° and AD ⊥ BC. Prove that AC2= AB2 + BC2 - 2 BC.BD.


181 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

235.

In the given fig, AD is a median of a triangle ABC and AM ⊥ BC. Prove that:
(i)    <pre>uncaught exception: <b>mkdir(): Permission denied (errno: 2) in /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php at line #56mkdir(): Permission denied</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php line 56<br />#0 [internal function]: _hx_error_handler(2, 'mkdir(): Permis...', '/home/config_ad...', 56, Array)
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php(56): mkdir('/home/config_ad...', 493)
#2 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/FolderTreeStorageAndCache.class.php(110): com_wiris_util_sys_Store->mkdirs()
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(231): com_wiris_plugin_impl_FolderTreeStorageAndCache->codeDigest('mml=<math xmlns...')
#4 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(59): com_wiris_plugin_impl_RenderImpl->computeDigest(NULL, Array)
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#6 {main}</pre>
(ii) <pre>uncaught exception: <b>mkdir(): Permission denied (errno: 2) in /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php at line #56mkdir(): Permission denied</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php line 56<br />#0 [internal function]: _hx_error_handler(2, 'mkdir(): Permis...', '/home/config_ad...', 56, Array)
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php(56): mkdir('/home/config_ad...', 493)
#2 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/FolderTreeStorageAndCache.class.php(110): com_wiris_util_sys_Store->mkdirs()
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(231): com_wiris_plugin_impl_FolderTreeStorageAndCache->codeDigest('mml=<math xmlns...')
#4 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(59): com_wiris_plugin_impl_RenderImpl->computeDigest(NULL, Array)
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#6 {main}</pre>
(iii)   AC squared plus AB squared space equals space 2 AD squared plus 1 half BC squared.



81 Views

236. Prove that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.
1432 Views

237.

In the given fig, two chords AB and CD intersect each other at the point P. Prove that:
(i) ∆APC ~ ∆DPB.
(ii) AP . PB = CP . DP




2163 Views

238.

In the given Fig, two chords AB and CD of a circle intersect each other at the point P (when produced) outside the circle. Prove that
(i) ∆PAC ~ ∆PDB.
(ii) PA. PB = PC . PD.


3086 Views

Advertisement
239.

In the given fig, D is a point on side BC of ∆ABC such that  BD over CD equals AB over AC. Prove that AD is the bisector of ∠BAC.

240 Views

240. Nazima is fly fishing a stream. The tip of her fishing rod is 1.8 m above the surface of the water and the fly at the end of the string rests on the water 3.6 m away and 2.4 m from a point directly under the tip of the rod. Assuming that her string (from the tip of her rod to the fly) is taut, how much string does she have out (see Fig. 6.73)? If she pulls in the string at the rate of 5 cm per second, what will be the horizontal distance of the fly from her after 12 second ?
2516 Views

Advertisement