Show that ΔABC, where A(–2, 0), B(2, 0), C(0, 2) and ΔPQR wh

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

511. In ∆ABC and ∆DEF, if AB = DF, BC = DE, AC = EF and ∆D = 55°. Then, ∠B =
  • 55°
  • 35°
  • 90°
  • 90°
108 Views

512. In the following figure, ∠B = ∠D = 90° and BC = CD. Then, the relation between AB and DE is


  • AB = DE  
  • AB > DE
  • AB < DE 
  • AB < DE 
  • AB < DE 
163 Views

513.  In ∆ABC, AB = AC, BD = EC. Then, ∆ADE is


  • right angled
  • scalene
  • isosceles
  • isosceles
120 Views

 Multiple Choice QuestionsShort Answer Type

Advertisement

514.

Show that ΔABC, where A(–2, 0), B(2, 0), C(0, 2) and ΔPQR where P(–4, 0), Q(4, 0), R(0, 2) are similar triangles. 


In ΔABC, the coordinates of the vertices are A(–2, 0), B(2, 0), C(0, 2).

AB space equals space square root of left parenthesis 2 plus 2 right parenthesis squared plus left parenthesis 0 minus 0 right parenthesis squared end root space equals 4
BC space equals space square root of left parenthesis 0 minus 2 right parenthesis squared plus left parenthesis 2 minus 0 right parenthesis squared end root space equals space square root of 8 space equals space 2 square root of 2
CA space equals space square root of left parenthesis 0 plus 2 right parenthesis squared plus left parenthesis 2 minus 0 right parenthesis squared end root space equals space square root of 8 space equals space 2 square root of 2

In ΔPQR, the coordinates of the vertices are P(–4, 0), Q(4, 0), R(0, 4).
PQ space equals space square root of left parenthesis 4 plus 4 right parenthesis squared space plus space left parenthesis 0 minus 0 right parenthesis squared end root space equals space 8
QR space equals space square root of left parenthesis 0 minus 4 right parenthesis squared plus left parenthesis 4 minus 0 right parenthesis squared end root space equals space 4 square root of 2
PR space equals space square root of left parenthesis 0 plus 4 right parenthesis squared space plus left parenthesis 4 minus 0 right parenthesis squared end root space equals space 4 square root of 2

Now, for ΔABC and ΔPQR to be similar, the corresponding sides should be proportional.
AB over PQ space equals space 4 over 8 space equals space 1 half
fraction numerator begin display style BC end style over denominator begin display style QR end style end fraction space equals space fraction numerator begin display style 2 square root of 2 end style over denominator begin display style 4 square root of 2 end style end fraction space equals space fraction numerator begin display style 1 end style over denominator begin display style 2 end style end fraction
fraction numerator begin display style CA end style over denominator begin display style RP end style end fraction space equals space fraction numerator begin display style 2 square root of 2 end style over denominator begin display style 4 square root of 2 end style end fraction space equals space fraction numerator begin display style 1 end style over denominator begin display style 2 end style end fraction
So comma space fraction numerator begin display style AB end style over denominator begin display style PQ end style end fraction space equals fraction numerator begin display style BC end style over denominator begin display style QR end style end fraction space equals fraction numerator begin display style CA end style over denominator begin display style RP end style end fraction
Thus, ΔABC is similar to ΔPQR. 

2835 Views

Advertisement
Advertisement
515.

Given ABC ~ PQR, if ABPQ = 13, then find arABCarPQR


516.

Prove that the area of an equilateral triangle described on one side of the square is equal to half the area of the equilateral triangle described on one of its diagonal.


517.

If the area of two similar triangles are equal, prove that they are congruent.


 Multiple Choice QuestionsLong Answer Type

518.

In an equilateral △ABC, is a point on side BC such that BD =1/3BC. Prove that 9 (AD)2 = 7(AB)2


Advertisement
519.

Prove that, in a right triangle, the square on the hypotenuse is equal to the sum of the squares on the other two sides.


 Multiple Choice QuestionsMultiple Choice Questions

520.

ABCD is a rectangle whose three vertices are B (4, 0), C(4,3) and D(0, 3). The length of one of its diagonals is

  • 5

  • 4

  • 3

  • 25


Advertisement