The number of solutions of 2sinx + cosx = 3
1
2
infinite
no solution
Let tanα = aa + 1 and tanβ = 12a + 1, then α + β is
π4
π3
π2
3π4
If θ + ϕ = π4, then 1 + tanθ 1 + tanϕ is equal to
5/2
1/3
If sinθ and cosθ are the roots of the equation ax2 - bx + c = 0, then a, b and c satisfy the relation
a2 + b2 + 2ac = 0
a2 - b2 + 2ac = 0
a2 + c2 + 2ab = 0
a2 - b2 - 2ac = 0
If sinθ + cosθ = 0 and 0 < θ < π, then θ
0
The value of cos15° - sin15° is
12
- 12
122
B.
Now, cos15° - sin15°
= 212cos15° - 12sin15°= 2sin45° cos15° - cos45°sin15°= 2sin45° - 15°= 2sin30°= 2 × 12= 12
The period of the function f(x) = cos4x + tan3x is
π
If x + 1x = 2cosθ, then for any integer n, xn + 1xn is equal to
2cosnθ
2sinnθ
2icosnθ
2isinnθ
Prove that the equation cos(2x) + asin(x) = 2a - 7 possesses a solution if 2 ≤ a ≤ 6.
Find the values of x. - π < x < π, x ≠ 0 satisfying the equation,
g1 + cosx + cos2x + ... ∞ = 43