The smallest value of 5cosθ + 12 is
5
12
7
17
Show that
sinθcos3θ + sin3θcos9θ + sin9θcos27θ = 12tan27θ - tanθ
LHS = sinθcos3θ + sin3θcos9θ + sin9θcos27θNow, sinθcos3θ = sinθcos3θ × 2cosθ2cosθ= sin2θ2cos3θcosθ = 12sin3θ - θcos3θcosθ= 12sin3θcosθ - cos3θsinθcos3θcosθ= 12tan3θ - tanθSimilarly, sin3θcos9θ = 12tan9θ - tan3θand sin9θcos27θ = 12tan27θ - tanθ = RHS
The equation 3sinx + cosx = 4 has
infinitely many solutions
no solution
two solutions
only one solution
The value of
tanα + 2tan2α + 4tan4α + ... + 2n - 1tan2n - 1α + 2ncot2nα is
cot2nα
2ntan2nα
0
cotα
If tanαπ4 = cotβπ4, then
α + β = 0
α + β = 2n
α + β = 2n + 1
α + β = 2(2n + 1), ∀ n is an integer
The principal value of sin-1tan- 5π4 is
π4
- π4
π2
- π2
The value of cosπ15cos2π15cos4π15cos8π15
116
- 116
1
The principal amplitude of sin40° + icos40°5
70°
- 110°
110°
- 70°
Find the general solution of secθ + 1 = 2 + 3tanθ
The real part of 1 - cosθ + 2isinθ- 1
13 + 5cosθ
15 - 3cosθ
13 - 5cosθ
15 + 3cosθ