Find the value of sin12°sin48°sin54°.
12
14
16
18
If 3sinθ + 5cosθ, then the value of 5sinθ - 3cosθ is equal to
5
3
4
None of these
Domain of the function f(x) = logx(cos(x)), is
- π2, π2 - 1
- π2, π2
If x = secθ - cosθ, y = secnθ - cosnθ, then x2 + 4dydx2 is equal to
n2(y2 - 4)
n2(4 - y2)
n2(y2 + 4)
The two curves y = 3 and y = 5 intersect at an angle
tan-1log3 - log51 + log3log5
tan-1log3 + log51 - log3log5
tan-1log3 + log51 + log3log5
tan-1log3 - log51 - log3log5
The period of sin4x + cos4x is
π42
π22
π4
π2
If 3 cos x ≠ 2 sin x, then the general solution of sin2x - cos2x = 2 - sin2x is
nπ + - 1nπ2, n ∈ Z
nπ2, n ∈ Z
4n ± 1π2, n ∈ Z
(2n - 1)π, n ∈ Z
If cosx + cos2x = 1, then the value of sin12x + 3sin10x + 3sin8x + sin6x - 1, is equal to :
2
1
- 1
0
The product of all values of cosα + isinα3/5 is :
cosα + isinα
cos3α + isin3α
cos5α + isin5α
1 + cosπ81 + cos3π81 + cos5π81 + cos7π8 is equal to
cosπ8
B.
1 + cosπ81 + cos3π81 + cos5π81 + cos7π8= 1 + cosπ81 + cos3π81 + cosπ - 3π81 + cosπ - π8= 1 + cosπ81 + cos3π81 - cosπ81 - cos3π8= 1 - cos2π81 - cos23π8= sin2π8 . sin23π8= 142sin3π8sinπ8= 14cos3π8 - π8 - cos3π8 - π82= 14cosπ8 - cosπ22 = 14122= 18