A tower subtends angles α, 2α and 

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

811.

A tower subtends angles α, 2α and 3α respectively at points A, B and C, all lying on a horizontal line through the foot of the tower,then ABBC is equal to :

  • sin3αsin2α

  • 1 + 2cos2α

  • 2cos2α

  • sin2αsinα


B.

1 + 2cos2α

In ECD,    tan3α = hCD

 CD = hcot3α      ...iIn EBD,tan2α = hBD  BD = hcot2α     ...iiIn EAD,  tanα = hAD  AD = hcotα        ...iiiFrom Eqs. (ii) and (iii),AD- BD = hcotα - hcot2α          AB = hcotα - cot2α     ...iv

From Eqs. (i) and (ii), we getBD - CD = hcot2α - hcot3α          BC = hcot2α - cot3α        ...vFrom Eqs. (iv) and (v), we get     ABBC = hcotα - cot2α2cot2α - cot3α ABBC = cosαsinα - cos2αsin2αcos2αsin2α - cos3αsin3α = sin2α - αsinαsin2αsin3α - 2αsin2αsin3α            = sin3αsinα = 3sinα - 4sin3αsinα           = 3 - 4sin2α

         = - 3 - 21 - cos2α= 1 + 2cos2α


Advertisement
812.

The co-ordinate axes are rotated through an angle 135°. If the co-ordinates of a point P inthe new system are known to be (4, - 3), then the co-ordinates of P in the original system are :

  • 12, 72

  • 12, - 72

  • - 12, - 72

  • - 12, 72


813.

The angle between the curves y = sin(x) and y = cos(x) is

  • tan-122

  • tan-132

  • tan-133

  • tan-152


814.

If sin6θ = 32cos5θsinθ - 32cos3θsinθ + 3x, then x is equal to :

  • cosθ

  • cos2θ

  • sinθ

  • sin2θ


Advertisement
815.

The period of the function fθ = sinθ3 + cosθ2 is

  • 3π

  • 6π

  • 9π

  • 12π


816.

cosαsinβ - γ + cosβsinγ - α + cosγsinα - β is equal to

  • 0

  • 12

  • 1

  • 4cosαcosβcosγ


817.

The value of cos2π15cos4π15cos8π15cos14π15 is :

  • 116

  • 18

  • 112

  • 14


818.

If A + B + C = 270°, then
cos(2A) + cos(2B) + cos(2C) is equal to :

  • 4sin(A)sin(B)sin(C)

  • 4cos(A)cos(B)cos(C)

  • 1 - 4sin(A)sin(B)sin(C)

  • 1 - 4cos(A)cos(B)cos(C)


Advertisement
819.

If xn = cosπ2n + isinπ2n, then n = 1xn is equal to

  • - 1

  • 1

  • 12

  • - 3


820.

If n  N and the period of cossinxn is 4π, then n is equal to

  • 4

  • 3

  • 2

  • 1


Advertisement