If the distance between the points (acosθ, asinθ) and

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

821.

The expression for tan9° - tan27° - tan63° + tan81° is equal to

  • 4

  • 3

  • 2

  • 1


822.

In ABC, cosB + 2C + 3A2 + cosA - B2 is

  • - 1

  • 0

  • 1

  • 2


823.

The value of series cos12° + cos84° + cos132° + cos156° is

  • 12

  • 14

  • - 14

  • - 12


824.

For x IR, 3cos4x - 5 + 4 lies in the interval

  • [1, 7]

  • [4, 7]

  • [0, 7]

  • [2, 7]


Advertisement
825.

If x = logcotπ4 + θ, then the value of sinhx is

  • tan2θ

  • - tan2θ

  • cot2θ

  • - cot2θ


826.

If in a ABC, r3 = r1 + r2 + r, then A + B is equal to

  • 120°

  • 100°

  • 90°

  • 80°


827.

In a ABCa - b2cos2C2 + a +b2sin2C2 is equal to

  • a2

  • c2

  • b2

  • a2 + b2


828.

In a ABC, the correct formulae among the following are

I. r = 4RsinA2sinB2sinC2II. r1 = s - atanA2III. r3 = s - c

  • only I, II

  • only II, III

  • only I, III

  • I, II, III


Advertisement
829.

An aeroplane flying with uniform speed horizontally one km above the ground is observed at an elevation of 60°. After 10 s if the elevation is observed to be 30°, then the speed of the plane (in km/h) is

  • 2403

  • 2003

  • 2403

  • 1203


Advertisement

830.

If the distance between the points (acosθ, asinθ) and  (acosϕ, asinϕ) is 2a, then θ is equal to

  • 2 ± π + ϕ, n  Z

  •  + π2 + ϕ, n  Z

  • nπ - ϕ, n  Z

  • 2 + ϕ, n  Z


A.

2 ± π + ϕ, n  Z

Let the points be A = acosθ, asinθ and B = acosϕ, asinϕ AB = acosθ - acosϕ2 + asinθ - asinϕ2            = a2cos2θ + a2cos2ϕ - 2a2cosθcosϕ + a2sin2θ + a2sin2ϕ - 2a2sinθsinϕ            = 2a2 - 2a2cosθcosϕ + sinθsinϕ             = 2a1 - cosθ - ϕ 2a = 2a2sinθ - ϕ2 sinθ - ϕ2 = 1 θ - ϕ2 =  ± π2   θ - ϕ = 2 ± π          θ = 2 ± π + ϕ

where, n  Z


Advertisement
Advertisement