Important Questions of Vector Algebra Mathematics | Zigya

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement
461.

If a, b and c are three non-zero vectors such that each one of them being perpendicular to the sum of the other two vectors, then the value of a + b + c2 is

  • a2 + b2 + c2

  • a + b + c

  • 2a2 + b2 + c2

  • 12a2 + b2 + c2


462.

Let u, v and w be vectors such that u + v + w = 0. If u = 3, v = 4 and w = 5, then u - v + v · w + w · u is equal to

  • 0

  • - 25

  • 25

  • 50


463.

If λ3i^ + 2j^ - 6k^ is a unit vector, then the value of λ are

  • ± 17

  • ± 7

  • ± 43

  • ± 143


464.

If the direction cosines of a vector of magnitude 3 are 23, - a3, 23, a >0, then the vector is

  • 2i^ + j^ + 2k^

  • 2i^ - j^ + 2k^

     

  • i^ - 2j^ + 2k^

  • i^ + 2j^ + 2k^


Advertisement
465.

Equation of the plane through the mid-point of the line segment joining the points P(4, 5, - 10), Q(- 1, 2, 1) and perpendicular to PQ is

  • r . 32i^ + 72j^ - 92k^ = 45

  • r . - i^ + 2j^ + k^ = 1352

  • r . 5i^ +3j^ - 11k^ + 1352 = 0

  • r . 5i^ + 3j^ - 11k^ = 1352


466.

A unit vector parallel to the straight line x - 23 = 3 + y- 1 = z - 2- 4 is

  • 1263i^ - j^ + 4k^

  • 126i^ + 3j^ - k^

  • 1263i^ - j^ - 4k^

  • 1263i^ + j^ + 4k^


467.

The angle between the two vectors i^ + j^ + k^ and 2i^ - 2j^ + 2k^ is equal to

  • cos-123

  • cos-116

  • cos-156

  • cos-113


468.

If a = i^ + j^ + k^, b = 4i^ + 3j^ + 4k^ and c = i^ + αj^ + βk^ are copalnar and c = 3, then

  • α = 2, β = 1

  • α = 1, β = ± 1

  • α = ± 1, β = 1

  • α = ± 1, β = - 1


Advertisement
469.

Let P (1, 2, 3) and Q (- 1, - 2, - 3) be the two points and let O be the origin. Then, PQ + OP is equal to

  • 13

  • 14

  • 24

  • 12


470.

Let ABCD be a parallelogram. If AB = i^ + 3j^ + 7k^, AD = 2i^ + 3j^ - 5k^ and p is a unit vector parallel to AC, then p is equal to

  • 132i^ + j^ + 2k^

  • 132i^ + 2j^ + 2k^

  • 173i^ + 6j^ + 2k^

  • 176 + 2j^ + 3k^


Advertisement