An unit vector perpendicular to both i^ + j^ and j^ + k^ is :
i^ - j^ + k^
i^ + j^ + k^
i^ + j^ - k^3
i^ - j^ + k^3
The area of the triangle whose vertices are (1, 2, 3), (2, 5, -1) and (-1, 1, 2) is :
150 sq unit
145 sq unit
1552 sq unit
For any three vectors a→, b→, c→, a→ × b→ × c→ + b→ × c→ + a→ + c→ × a→ + b→ is :
0→
a→ + b→ + c→
a→ . b→ × c→
a→ × b→ . c→
If a→, b→, c→ are any three vectors, then a→ + b→ b→ + c→ c→ + a→ is equal to
a→ b→ c→
0
2a→ b→ c→
a→ b→ c→2
The volume of the parallelopiped whose coterminus edges are i^ - j^ + k^, 2i^ - 4j^ + 5k^ and 3i^ - 5j^ + 2k^ is :
4 cu unit
3 cu unit
2 cu unit
8 cu unit
For any vector a→, i^ × a→ × i^ + j^ × a→ × j^ + k^ × a→ × k^ is equal to:
a→
2a→
3a→
If the vectors 3i^ + λj^ + k^ and 2i^ - j^ + 8k^ are perpendicular, then λ is :
- 14
7
14
17
The projection of the vector i^ + j^ + k^ along the vector j^ is:
1
2
- 1
The projection of i^ + 3j^ + k^ on 2i^ - 3j^ + 6k^ is :
1/7
- 1/7
- 7
If a→ × b→ = 0 and a→ . b→ = 0, then :
a→ ⊥ b→
a→ ∥ b→
a→ = 0→ and b→ = 0→
a→ = 0→ or b→ = 0→