Important Questions of Vector Algebra Mathematics | Zigya

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement
491.

a × b2 is equal to :

  • a2 + b2 - a . b

  • a2 b2 - a . b2

  • a2 + b2 - 2a . b

  • a2 + b2 - 2 . a . b


492.

Let ABCD be the parallelogram whose sides AB and AD are represented by the vectors 2i + 4j - 5k and i + 2j - 3k respectively. Then, if a is a unit vector parallel to AC, then a equals:

  • 133i - 6j - 2k

  • 133i + 6j + 2k

  • 173i - 6j - 2k

  • 173i + 6j - 2k


493.

Let a and b be two unit vectors such that angle between them is 60°. Then a - b is equal to :

  • 5

  • 3

  • 0

  • 1


494.

If a = i^ + 2j^ + 3k^ and b = i^ × a × i^ + j^ × a × j^ + k^ × a × k^ then length of b is equal to :

  • 12

  • 212

  • 314

  • 214


Advertisement
495.

The velocity of a boat X relative to a boat Y is 5i^ - 2j^ and that of Y relative to another boat Z is 9i^ + 4j^ where i^ and j^ are the velocity of k not per hour, east and north respectively. Then the velocity is :

  • 210 knot/h

  • 102 knot/h

  • 102 knot/h

  • 210 knot/h


496.

Two vectors a and b of equal magnitude 5 originating from a point and directs respectively towards north-east and north-west. Then the magnitude of a - b is :

  • 32

  • 23

  • 25

  • 52


497.

ABCD is a quadrilateral, P, Q are the mid points of BC and AD, then AB + DC is equal to :

  • 3QP

  • QP

  • 4QP

  • 2QP


498.

If a, b, c are are the three vectors mutually perpendicular to each other and a = 1, b = 3 and c = 5, then a - 2b, b - 3c, c - 4a is equal to

  • 0

  • - 24

  • 3600

  • - 215


Advertisement
499.

A unit vector coplanar with i^ + j^ + 2k^ and i^ + 2j^ + k^, and perpendicular to i^ + j^ + k^ is :

  • j^ - k^2

  • i^ + j^ + k^3

  • i^ + j^ + 2k^6

  • i^ + 2j^ + k^6


500.

Forces acting on a particle have magnitude 5, 3 and 1 unit and act in the direction of the vectors 6i^ + 2j^ + 3k^, 3i^ - 2j^ + 6k^ and 2i^ - 3j^ - 6k^ respectively. They remain constant while the particle is displaced from the point A (2, - 1, - 3) to B (5, - 1, 1). The work done is :

  • 11 unit

  • 33 unit

  • 10 unit

  • 30 unit


Advertisement