230.
Show that the angle between two diagonals of a cube is
Take O, a comer of cube OBLCMANP, as origin and OA, OB, OC. the three edges through it as the axes.
![](/application/zrc/images/qvar/MAEN12067206-1.png)
Let OA = OB = OC = α, then the co-ordinates of O, A, B, C are (0, 0, 0),
(a, 0. 0), (0, a, 0). (0, 0, a) respectively ; those of P, L, M, N are (a, a, a),(0, a. a), (a, 0, a), (a, a, 0) respectively.
The four diagonals are
OP, AL, BM, CN.
Consider the diagonals AL and BM
![AL with rightwards arrow on top space equals space straight P. straight V. space of space straight L space minus space straight P. straight V. space of space straight A space equals space left parenthesis straight a space straight j with hat on top space plus space straight a space straight k with hat on top right parenthesis space minus space left parenthesis straight a space straight i with hat on top right parenthesis space equals space minus straight a space straight i with hat on top space plus straight a space straight j with hat on top space plus space straight a space straight k with hat on top](/application/zrc/images/qvar/MAEN12067206-2.png)
![BM with rightwards arrow on top space equals space straight P. straight V. space of space straight M space minus space straight P. straight V. space of space straight B space equals space left parenthesis straight a straight i with hat on top space plus space straight a space straight k with hat on top right parenthesis space minus space left parenthesis straight a space straight j with hat on top right parenthesis space equals space straight a space straight i with hat on top space minus space straight a space straight j with hat on top space plus space straight a space straight k with hat on top](/application/zrc/images/qvar/MAEN12067206-3.png)
Let
![straight theta](/application/zrc/images/qvar/MAEN12067206-4.png)
be angle
between AL and BM.
![therefore space space space cos space straight theta space equals space fraction numerator AL with rightwards arrow on top space BM with rightwards arrow on top over denominator open vertical bar AL with rightwards arrow on top close vertical bar space open vertical bar BM with rightwards arrow on top close vertical bar end fraction space equals space fraction numerator left parenthesis negative straight a right parenthesis thin space left parenthesis straight a right parenthesis space plus space left parenthesis straight a right parenthesis thin space left parenthesis negative straight a right parenthesis space plus space left parenthesis straight a right parenthesis space left parenthesis straight a right parenthesis over denominator square root of straight a squared plus straight a squared plus straight a squared end root space square root of straight a squared plus straight a squared plus straight a squared end root end fraction
space space space space space space space space space space space space space space space space space equals space fraction numerator negative straight a squared minus straight a squared plus straight a squared over denominator square root of 3 space straight a squared end root space square root of 3 straight a squared end root end fraction space equals space minus fraction numerator straight a squared over denominator 3 straight a squared end fraction space equals space minus 1 third](/application/zrc/images/qvar/MAEN12067206-5.png)
![therefore space space space acute space angle space straight theta space is space given space by](/application/zrc/images/qvar/MAEN12067206-6.png)
![cos space straight theta space equals space 1 third](/application/zrc/images/qvar/MAEN12067206-7.png)
![therefore space space space straight theta space equals space cos to the power of negative 1 end exponent space open parentheses 1 third close parentheses](/application/zrc/images/qvar/MAEN12067206-8.png)
Similarly the angle between the other pairs of diagonals is
82 Views