Show that the four points A, B, C and D with position vectors r

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

311.

Find the angle between the vector straight i with hat on top minus straight j with hat on top space and space straight j with hat on top space minus space straight k with hat on top.

960 Views

312.

Find the value of 'p' for which the vectors 3 straight i with hat on top plus 2 straight j with hat on top plus 9 straight k with hat on top space and space straight i with hat on top minus 2 straight p straight j with hat on top plus 3 straight k with hat on top are parallel.

184 Views

313.

If the cartesian equations of a line are fraction numerator 3 minus straight x over denominator 5 end fraction equals fraction numerator straight y plus 4 over denominator 7 end fraction equals fraction numerator 2 straight z minus 6 over denominator 4 end fraction comma write the vector equation for the line. 

140 Views

314. If space straight a with rightwards arrow on top space and space straight b with rightwards arrow on top space are space perpendicular space vectors comma space open vertical bar straight a with rightwards arrow on top plus straight b with rightwards arrow on top close vertical bar space equals space 13 space and space open vertical bar straight a with rightwards arrow on top close vertical bar space equals 5 space and space find space the space value space of space open vertical bar straight b with rightwards arrow on top close vertical bar.
135 Views

Advertisement
Advertisement

315.

Show that the four points A, B, C and D with position vectors
4 straight i with hat on top plus 5 straight j with hat on top plus straight k with hat on top comma negative straight j with hat on top minus straight k with hat on top comma space 3 straight i with hat on top plus 9 straight j with hat on top plus 4 straight k with hat on top space and space 4 left parenthesis negative straight i with hat on top plus straight j with hat on top plus straight k with hat on top right parenthesis respectively are coplanar.


Given position vectors of four points A, B, C and D are:

OA with rightwards arrow on top space equals space 4 straight i with hat on top minus 5 straight j plus straight k
OB with rightwards arrow on top space equals negative straight j minus straight k
OC with rightwards arrow on top equals 3 straight i with hat on top plus 9 straight j plus 4 straight k
OD with rightwards arrow on top equals space 4 open parentheses negative straight i with hat on top plus straight j plus straight k close parentheses
These points are coplanar, if the vectors, AB with rightwards arrow on top comma space AC with rightwards arrow on top space and space AD with rightwards arrow on top are coplanar. 

AB with rightwards arrow on top space equals OB with rightwards arrow on top minus OA with rightwards arrow on top
equals negative straight j minus straight k minus open parentheses 4 straight i with hat on top plus 5 straight j plus straight k close parentheses equals negative 4 straight i with hat on top minus 6 straight j minus 2 straight k
AC with rightwards arrow on top equals OC with rightwards arrow on top minus OA with rightwards arrow on top
equals 3 straight i with hat on top plus 9 straight j plus 4 straight k minus open parentheses 4 straight i with hat on top plus 5 straight j plus straight k close parentheses equals negative straight i with hat on top plus 4 straight j plus 3 straight k
AB with rightwards arrow on top space equals OD with rightwards arrow on top minus OA with rightwards arrow on top
equals 4 open parentheses negative straight i with hat on top plus straight j plus straight k close parentheses minus open parentheses 4 straight i with hat on top plus 5 straight j plus straight k close parentheses equals negative 8 straight i with hat on top minus straight j plus 3 straight k

These vectors are coplanar if and only if, they can be expressed as a linear combination of other two. 
So Let

AB with rightwards arrow on top space equals space straight x AC with rightwards arrow on top space plus straight y AD with rightwards arrow on top
rightwards double arrow space minus 4 straight i with hat on top minus 6 straight j minus 2 straight k equals straight x open parentheses negative straight i with hat on top plus 4 straight j plus 3 straight k close parentheses plus straight y open parentheses negative 8 straight i with hat on top minus straight j with hat on top plus 3 straight k with hat on top close parentheses
rightwards double arrow space minus 4 straight i with hat on top minus 6 straight j with hat on top minus 2 straight k with hat on top equals space open parentheses negative straight x minus 8 straight y close parentheses straight i with hat on top plus left parenthesis 4 straight x minus straight y right parenthesis straight j with hat on top plus left parenthesis 3 straight x plus 3 straight y right parenthesis straight k with hat on top
Comparing the coefficients, we have, 

negative straight x minus 8 straight y equals negative 4 semicolon space space 4 straight x minus straight y equals negative 6 semicolon space space 3 straight x plus 3 straight y equals negative 2
Thus comma space solving space the space first space two space equations comma space space we space get
straight x equals fraction numerator negative 4 over denominator 3 end fraction space and space straight y space equals 2 over 3
These values of x and y satisfy the equation  3x + 3y = -2.
Hence the vectors are coplanar. 

373 Views

Advertisement
316.

The scalar product of the vector straight a with rightwards arrow on top equals space straight i with hat on top plus straight j with hat on top plus straight k with hat on top with a unit vector along the sum of vectors straight b with rightwards arrow on top equals 2 straight i with hat on top plus 4 straight j with hat on top minus 5 straight k with hat on top space space and space straight c with rightwards arrow on top space equals space straight lambda straight i with hat on top plus 2 straight j with hat on top plus 3 straight k with hat on top is equal to one. Find the value of straight lambda and hence find the unit vector along straight b with rightwards arrow on top plus straight c with rightwards arrow on top.

336 Views

 Multiple Choice QuestionsLong Answer Type

317.

Find the distance of the point (2, 12, 5) from the point of intersection of the line 
straight r with rightwards arrow on top equals 2 straight i with hat on top minus 4 straight j with hat on top plus 2 straight k with hat on top plus straight lambda open parentheses 3 straight i with hat on top plus 4 straight j with hat on top plus 2 straight k with hat on top close parentheses space and space the space plane space straight r with rightwards arrow on top. open parentheses straight i with hat on top minus 2 straight j with hat on top plus straight k with hat on top close parentheses equals 0.

140 Views

 Multiple Choice QuestionsShort Answer Type

318.

If a unit vector straight a with rightwards arrow on top space equals space straight x straight i with hat on top plus 2 straight j with hat on top minus straight z straight k with hat on top and straight b with rightwards arrow on top space equals space 3 straight i with hat on top minus straight y straight j with hat on top plus straight k with hat on top are two equal vectors, then write the value of x+y+z.

161 Views

Advertisement
319.

If a unit vector straight a with rightwards arrow on top makes angle straight pi over 3 space with space straight i with hat on top comma space space space straight pi over 4 space with space straight j with hat on top space and space acute space angle space straight theta space with space straight k with hat on top comma space then find the value of straight theta.

151 Views

320.

If straight a with rightwards arrow on top space and space straight b with rightwards arrow on top are two vectors such that open vertical bar straight a with rightwards arrow on top plus straight b with rightwards arrow on top close vertical bar equals open vertical bar straight a with rightwards arrow on top close vertical bar comma then prove that vector 2 straight a with rightwards arrow on top plus straight b with rightwards arrow on top is perpendicular to vector straight b with rightwards arrow on top.

158 Views

Advertisement