If a, b, c and a', b',c' form a reciprocal system of vectors, the

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

381.

The length of the projection of the line segment joining the points (5, –1, 4) and (4, –1, 3) on the plane, x + y + z = 7 is:

  • 23

  • 23

  • 2/3

  • 1/3


382.

For any vector x, where i, j, k have their usual meanings the value of x × i^2 + x × j^2 + x × k^2 where i^, j^, k^ have their usual meanings, is equal to

  • x2

  • 2x2

  • 3x2

  • 4x2


383.

If the sum of two unit vectors is a unit vector, then the magnitude of their difference is

  • 2 units

  • 2 units

  • 3 units

  • 5 units


384.

For non-zero vectors a and b, if a + b < a - b,  then a and b are

  • collinear

  • perpendicular to each other

  • inclined at an acute angle

  • inclined at an obtuse angle


Advertisement
385.

Which of the following is not always true?

  • a + b2 = a2 + b2, if a and b are perpendicular to each other

  • a + λb  a for all λ  R,  if a and b are perpendicular to each other

  • a + b2 +a - b2 = 2a2 + b2

  • a + λb  a for all λ  R, if a is parallel to b


386.

If the four points with position vectors - 2i^ + j^ + k^, i^ + j^ + k^, j^ - k^ and λj^ + k^ are coplanar, then λ is equal to

  • 1

  • 2

  • - 1

  • 0


387.

The equation zz + az + az + b = 0, represents a circle, if

  • a2 = b

  • a2 > b

  • a2 <b

  •  None of the above


388.

If a, b, c are non-coplanar unit vectors such that

a × b × c = b + c2, then the angle between a and b is

  • 3π4

  • π4

  • π2

  • π


Advertisement
Advertisement

389.

If a, b, c and a', b',c' form a reciprocal system of vectors, then a . a'+ b . b' + c · c' is equal to

  • 0

  • 1

  • 2

  • 3


D.

3

We have,

We have, a' = b × cabc', b' = c × aabc', c' = a × babcor            a' = λb × c, b' = λc × a, c' = λa × bWhere      λ = 1abc    a . a' = b . b' = c . c' = 1 a . a' + b . b' + c . c' = 1 + 1 + 1 = 3


Advertisement
390.

If a, b, c are three non - zero vectors which are pairwise non-collinear. Also, a + 3b is collinear with c and b + 2c is collinear with a, then a + 3b + 6c is

  • c

  • 0

  • a + c

  • a


Advertisement