The vectors of magnitude a, 2a, 3a meet at a point and their dire

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

431.

The vector form of the sphere 2(x2 + y2 + z2) - 4x + 6y + 8z - 5 = 0 is

  • r . r - 2i^ + j^ + k^ = 25

  • r . r - 2i^ - 3j^ - 4k^ = 12

  • r . r - 2i^ + 3j^ + 4k^ = 52

  • r . r - 2i^ - 3j^ - 4k^ = 52


432.

If a = 5, b = 6 and a . b = - 25, then a × b is equal to

  • 25

  • 611

  • 115

  • 511


433.

If p, q and r are perpendicular to q + r, r + p, p + q respectively and if p + q = 6,  q + r= 43 and r + p = 4,  then p + q + r is

  • 52

  • 10

  • 15

  • 5


Advertisement

434.

The vectors of magnitude a, 2a, 3a meet at a point and their directions are along the diagonals of three adjacent faces of a cube. Then, the magnitude of their resultant is

  • 5a

  • 6a

  • 10a

  • 9a


A.

5a

Suppose that the sides of cube are unity and unit vector along OA, OB and OC are i^, j^, k^ respectively. OR, OS, OT are diagonals of cube having corresponding vector a, 2a and 3a (Magnitude) respectively.

 Unit vector along OR = j^ + k^2 Vector along OR = aj^ + k^2Similarly, vector alongOS = 2ak^ + i^2and vector alongOT = 3ai^ + j^2 ResultantR = OR +OS + OT   = aj^ + k^2 + 2ak^ + i^2 + 3ai^ + j^2  = 5a2 i^ + 4a2 j^ + 3a2 k^ R = 25a22 + 16a22 + 9a22 = 5a


Advertisement
Advertisement
435.

Which one of the following vectors is of magnitude 6 and perpendicular to both a = 2i^ + 2j^ + k^ and b = i^ - 2j^ + 2k^ ?

  • 2i^ - j^ - 2k^

  • 22i^ - j^ + 2k^

  • 32i^ - j^ - 2k^

  • 22i^ - j^ - 2k^


436.

If the vectors a = 2i^ + j^ + 4k^, b = 4i^ - 2j^ + 3k^ and c = 2i^ - 3j^ - λk^ are coplanar, then the value of λ is equal to

  • 2

  • 1

  • 3

  • - 1


437.

Let A(1, - 1, 2) and B (2, 3, - 1) be two points. If a point P divides AB internally in the ratio 2 : 3, then the position vector of P is

  • 15i^ + j^ + k^

  • 13i^ +  6j^ + k^

  • 13i^ + j^ + k^

  • 157i^ + 3j^ + 4k^


438.

If the scalar product of the vector i^ + j^ + 2k^ with the unit vector along mi^ + 2j^ + 3k^ is equal to 2, then one of the values of m is

  • 3

  • 4

  • 5

  • 6


Advertisement
439.

The vector equation of the straight line 1 - x3 = y + 1- 2 = 3 - z- 1 is

  • r = i^ - j^ + 3k^ + λ3i^ + 2j^ - k^

  • r = i^ - j^ + 3k^ + λ3i^ - 2j^ - k^

  • r = 3i^ - 2j^ - k^ + λi^ - j^ + 3k^

  • r = 3i^ + 2j^ - k^ + λi^ - j^ + 3k^


440.

If a is perpendicular to b, then the vector a × a × a × a × b is equal to

  • a2b

  • ab

  • a3b

  • a4b


Advertisement