If a→ = b→ = 1 and a→ + b→ = 3, then the value of 3a→ - 4b→ . 2a→ + 5b→ is :
- 21
- 212
21
212
If a→ = 3, b→ = 4, c→ = 5 and a→, b→, c→ are such that each is perpendicular to the sum of other two, then a→ + b→ + c→ is :
52
102
103
If a→, b→, c→ are unit vectors, then 2a→ - b→, 2b→ - c→, 2c - a→ is equal to :
1
0
- 3
If u→, v→, w→ be vectors such that u→ + v→ + w→ = 0→ and u→ = 3, v→ = 4, w→ = 5, then u→ . v→ + v→ . w→ + w→ . u→ is equal to :
47
- 47
- 25
If a→ is perpendicular to b→ and c→, a→ = 2, b→ = 3, c→ = 4 and the angle between b→ and c→ is 2π3, then a→ b→ c→ is equal to :
43
63
123
183
If a→, b→ and c→ are perpendicular to b→ + c→, c→ + a→ and a→ + b→ respectively and, if a→ + b→ = 6, b→ + c→ = 8 and c→ + a→ = 10, then a→ + b→ + c→ is equal to :
50
10
A vector perpendicular to 2i^ + j^ + k^ and coplanar with i^ + 2j^ + k^ and i^ + j^ + 2k^ is :
5j^ - k^
i^ + 7j^ - k^
5j^ + k^
2i^ - j^ - k^
If a→ = 2i^ - 3j^ + pk^ and a→ × b→ = a→ = 4i^ + 2j^ - 2k^, then p is :
- 1
2
Let a→ = i^ - j^, b→ = j^ - k^, c→ = k^ - i^. If d→ is a unit vector such that a→ . d→ = 0 = b→ c→ d→, then d→ is (are) :
± i^ + j^ - k^3
± i^ + j^ - 2k^6
± i^ + j^ + k^3
± k^
B.
Let d→ = d1i^ + d2j^ + d3k^a→ . d→ = d1 - d2 = 0 ⇒ d1 = d2 ...iAlso, d→ is a unit vector⇒ d12 + d22 + d32 = 1 ...iiib→ c→ d→ = 0 ⇒ 01- 1- 101d1d2d3 = 0⇒ - 1- d3 - d1 - 1- d2 = 0⇒ d1 + d2 + d3 = 0 ⇒ 2d1 + d3 = 0⇒ d3 = - 2d1 ...iiiUsing Eqs. (iii) and (i) in Eq. (ii) we getd12 + d12 + 4d12 = 1⇒ 6d12 = 1 ⇒ d1 = ± 16⇒ d2 = ± 16and d3 = ∓ 26∴ Required vector is± 16i^ + j^ - 2k^
If a→ and b→ are unit vectors such that a→ b→ a→ × b→ = 14, then angle between a→ and b→ is :
π3
π4
π6
π2