If A→ = i^ + 2j^ + 3k^,&n

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

511.

If A = i^ + 2j^ + 3k^, B = - i^ + 2j^ + 3k^ and C = 3i^ + j^, then A + tB is perpendicular to C, if t is equal to :

  • - 5

  • 4

  • 5

  • - 4


C.

5

A + tB = 1 - ti^ + 2 + 2tj^ + 3 + tk^A + tB . C = 31 - t + 2 +2t = 0 - 3t +2t + 3 + 2 = 0      - t = - 5  t = 5


Advertisement
512.

The magnitude of the projection of the vector 2i^ + 3j^ + k^ on the vector perpendicular to the plane containing the vectors i^ + j^ + k^ and i^ + 2j^ + 3k^ is

  • 32

  • 36

  • 6

  • 32


513.

Let a = 3i^ + 2j^ + xk^ and b = i^ - j^ + k^ , for some real x. Then a × b = r is possible if :

  • 0 < r  32

  • 32 < r  332

  • 332 < r  532

  • r  532


514.

If unit vector a makes angles π3 with i^, π4, with j^ and θ  0, π with k^, then a value of θ is

  • 2π3

  • 5π6

  • 5π12

  • π4


Advertisement
515.

Let α = 3i^ + j^ and β = 2i^ - j^ + 3k^. If β = β1 - β2, where β1 is paralle to α and β2 is perpendicular to α, then β1 × β2

  • 12- 3i + 9j + 5k

  • 123i - 9j + 5k

  • 3i - 9j - 5k

  • - 3i + 9j + 5k


516.

The distance of the point having position vector - i^ + 2j^ + 6k^ from the straight line passing  through the point (2, 3, - 4) and parallel to the vector 6i^ + 3j^ - 4k^ is :

  • 213

  • 7

  • 6

  • 43


517.

A force F = 3i^ - j^ acts on a point R (0, 1, 1), then the moment of a force about the point P(0, 1, 0) is

  • 3k^

  • i^ +3j^

  • - i^ -3j^

  • i^ +3j^ - 3k^


518.

Let a and b are non-zero and non-collinear vectors. If there exists scalars α, β such that αa + βb = 0, then

  • α = β  0

  • α + β = 0

  • α = β = 0

  • α  β


Advertisement
519.

If G is centroid of ABC, then

  • G = a + b + c

  • G = a + b + c2

  • 3G = a + b + c

  • 3G = a + b + c2


520.

Let a, b and c be vectors with magnitudes 3, 4 and 5 respectively and a + b + c = 0, then a . b  + b . c + c . a is

  • 47

  • 25

  • 50

  • - 25


Advertisement