If the curves x2a2 + y212 = 1 and&n

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

71.

A spherical iron ball ofradius 10 cm, coated with a layer of ice of uniform thickness, melts at a rate of 100 π cm/min. The rate at which the thickness of decreases when the thickness of ice is 5 cm, is

  • 1 cm/min

  • 2 cm/min

  • 1376 cm/min

  • 5 cm/min


72.

If ax2 + bx + 4 attains its minimum value - 1 at x = 1, then the values of a and bare respectively

  • 5, - 10

  • 5, - 5

  • 5, 5

  • 10, - 5


73.

The function f(x) = (9 - x2)2 increases in

  • - 3, 0  3, 

  • - , - 3  3, 

  • - , - 3  0, 3

  • (- 3, 3)


74.

Let gx = 2e,             if x  1logx - 1, if x > 1. The equation  of the normal to y = g(x) at the point (3, log(2)), is

  • y - 2x = 6 + log(2)

  • y + 2x = 6 + log(2)

  • y + 2x = 6 - log(2)

  • y + 2x = - 6 + log(2)


Advertisement
75.

If a and b are positive numbers such that a > b, then the minimum value of asecθ - btan0 < θ < π2 is

  • 1a2 - b2

  • 1a2 + b2

  • a2 + b2

  • a2 - b2


Advertisement

76.

If the curves x2a2 + y212 = 1 and y3 = 8x  intersect at right angle, then the value of a is equal to

  • 16

  • 12

  • 8

  • 4


D.

4

Given curves are x2a2 + y212 = 1

                  2xa2 + y212 = 1           dydx = - 12xa2y = m1and y3 = 8x  3y2dydx = 8            dydx = 83y2 = m2For θ = π2, 1 + m1m2 = 0 1 + - 12xa2y83y2 = 0         3a28x - 96x = 0                             a2 = 4


Advertisement
77.

If the function f(x) = x-12ax2 + 36a2x - 4(a > 0) attains its maximum and minimum at x = p and x = q respectively and if 3p = q2, then a is equal to

  • 16

  • 136

  • 13

  • 18


78.

The equation of the tangent to the curve y = 4ex4 at the point where the curve crosses y-axis is equal to

  • 3x + 4y = 16

  • 4x + y = 4

  • x + y = 4

  • 4x - 3y = - 12


Advertisement
79.

The diagonal of a square is changing at the rate of 0.5 cms-1. Then, the rate of change of area, when the area is 400 cm2 is equal to

  • 202 cm2/s

  • 102 cm2/s

  • 1102 cm2/s

  • 102 cm2/s


80.

The equation of the tangent to the curve x- 2.xy + y2 + 2x + y - 6 = 0 at (2, 2) is

  • 2x + y - 6 = 0

  • 2y + x - 6 = 0

  • x + 3y - 8 = 0

  • 3x + y - 8 = 0


Advertisement