If S1 and S2 are respectively the sets of local minimum and local maximum points of the function, f(x) = 9x4 + 12x3 - 36x2 - 25, x R, then:
S1 = { - 1}; S2 = {0, 2}
S1 = { - 2, 1}, S2 = {0}
S1 = { - 2}; S2 = {0, 1}
S1 = { - 2, 0}; S2 = {1}
Let f : [0, 2] R be a twice differentiable function such that f’’(x) > 0, for all . If = f(x) + f(2 - x), then is :
Increasing on (0, 1) and decreasing on (1, 2)
Decreasing on (0, 1) and increasing on (1, 2)
Decreasing on (0, 2)
Increasing on (0, 2)
B.
Decreasing on (0, 1) and increasing on (1, 2)
f''(x) > 0 f’(x) is increasing in [0,2 ].
Decreasing on (0, 1) and increasing on (1, 2)
The height of a right circular cylinder of maximum volume inscribed in a sphere of radius 3 is :
Given that the slope of the tangent to a curve y = y(x) at any point (x, y) is . If the curve passes through the centre of the circle x2 + y2 - 2x - 2y = 0, then its equation is :
A water tank has the shape of an inverted right circular cone, whose semi-vertical angle is . Water is poured into it at a constant rate of 5 cubic meter per minute. Then the rate (in m/min), at which the level of water is rising at the instant when the depth of water in the tank is 10m; is :
If the tangent to the curve, y = x3 + ax - b at the point (- 1, - 5) is perpendicular to the line, - x + y + 4 = 0, then which one of the following points lies on the curve ?
(2, - 1)
(- 2, 2)
(2, - 2)
(- 2, 1)
Let f(x) = ex - x and g(x) = x2 - x, . Then the set of all x R, where the function h(x) = (fog)(x) is increasing, is :
The tangent and normal to the ellipse 3x2 + 5y2 = 32 at the point P(2, 2) meet the x-axis at Q and R, respectively .Then the area (in sq. units) of the triangle PQR is :