If f(x) = x3 - 9x + 1 and x = 3, then using Newton Raphson method

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

151.

A spherical iron ball of radius 10cm is coated with a layer of ice of uniform thickness that melts a rate of 50cm3/min When the thickness of the ice 5cm, then the rate at which the thickness (in cm/min) of the ice decreases, is :

  • 56π

  • 118π

  • 19π

  • 136π

     


152.

If x + y = 8, then maximum value of x2y is

  • 20489

  • 204881

  • 20483

  • 204827


Advertisement

153.

If f(x) = x3 - 9x + 1 and x = 3, then using Newton Raphson method, first iteration is

  • 5318

  • 539

  • 3518

  • 359


A.

5318

Given, f(x) = x3 - 9x + 1       f'(x) = 3x2 - 9    f(3) = 33 - 93 + 1              = 27 - 27 + 1 = 1and f'(3) = 332 - 9              = 27 - 9 = 18By Newton Raphson method      x1 = x0 - fx0f'x0 x1 = 3 - f3f'3         = 3 - 118 = 54 - 118 = 5318


Advertisement
154.

The maximum value of logxx is

  • 0

  • 2

  • 1/e

  • - 1


Advertisement
155.

If a particle moves such that the displacement is proportional to the square of the velocity acquired, then its acceleration is

  • proportional to s2

  • proportional to 1s2

  • proportional to 1s

  • a constant


156.

The function fx = tan-1sinx + cosx, x > 0 is always an increasing function on the interval

  • 0, π

  • 0, π2

  • 0, π4

  • 0, 3π4


157.

A ladder 10 m long rests against a vertical wall with the lower end on the horizontal ground. The lower end of the ladder is pulled along the ground away from the wall at the rate of 3 cm/s. The height of the upper end while it is descending at the rate of 4 cm/s, is

  • 43 m

  • 53 m

  • 52 m

  • 6 m


158.

The slope of the tangent at (x, y) to a curve passing through 1, π4 is given by yx - cos2yx, then the equation of the curve is

  • y = tan-1logex

  • y = xtan-1logxe

  • y = xtan-1logex

  • None of the above


Advertisement
159.

If  the function f(x) = 2x3 - 9ax2 + 12a2x + 1 attains its maximum and minimum at p and q respectively such that p2  = q, then a equals 

  • 0

  • 1

  • 2

  • None of these


160.

On the interval [0, 1] the function x25(1 - x)75 takes its maximum value at the point

  • 0

  • 1/4

  • 1/2

  • 1/3


Advertisement