the coefficient of x8 in ax2 + 1bx13 is equal to t

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

21.

1 + C1ncosθ + C2ncos2θ + ... + Cnncos equals

  • 2cosθ2ncos2

  • 2cos22

  • 2cos2nθ2

  • 2cos2θ2n


22.

The number of irrational terms in the binomial expansion of 315 + 713100

  • 90

  • 88

  • 94

  • 95


23.

Let P(x) be a polynomial, which when divided by (x - 3) and (x - 5) leaves remainders 10 and 6, respectively. If the polynomial is divided by (x - 3) (x - 5), then the remainder is

  • - 2x + 16

  • 16

  • 2x - 16

  • 60


Advertisement

24.

the coefficient of x8 in ax2 + 1bx13 is equal to the coefficient of x- 8 in ax - 1bx213 then a and b will satisfy the relation

  • ab + 1 = 0

  • ab = 1

  • a = 1 - b

  • a + b = - 1


A.

ab + 1 = 0

The general term in ax2 + 1bx13 is,

Tt + 1 = Cr13ax213 - r1bxr          = Cr13a13 - r × b- r x26 - 3r

For coefficient of x8, put 26 - 3r = 8

 3r = 18   r = 6 T7 = Cr13 a13 - r b- 6 x8          = C613 a7 b- 6 x8

Now, the general term in ax - 1bx213 is,

T'r + 1 = Cr13ax13 - r- 1bx2r           = Cr13 a13 - r × b- r × x13 - r - 1r

For coefficient of x- 8, put 13 - 3r = - 8

 3r = 21   r = 7 T'8 = - 17 C713 a13 - 7 b- 7 x- 8          = - 17 C713 a6 b- 7 x- 8

According to the given condition,

Coefficient of x8 in ax2 + 1bx13

= Coefficient of x- 8 in ax - 1bx213

 C613 a7 b- 6 = - C713 a6 b- 7      C713 a7b6 = - C713 a6b7              a7a6 = - b6b7                 a = - 1b       ab  + 1 = 0


Advertisement
Advertisement
25.

Let 1 + x10 = r = 010crxT and r = 071 + x7 = drxT. If P = r = 05crxT and Q =  r = 03d2r + 1 , then PQ is equal to

  • 4

  • 8

  • 16

  • 32


26.

The coefficient of xn in the expansion of e7x + exe3x is

  • 4n - 1 - - 2n - 1n!

  • 4n - 1 - 2n - 1n!

  • 4n -  2nn!

  • 4n + - 2nn!


27.

The number (101)100 - 1 is divisible by

  • 104

  • 106

  • 108

  • 1012


28.

If A and B are coefficients of xn in the expansions of (1 + x)2n and (1+ x)2n - 1 respectively, then A /B is equal to

  • 4

  • 2

  • 9

  • 6


Advertisement
29.

If n > 1 is an integer and x  0, then (1 + x)n - nx - 1 is divisible by

  • nx3

  • n3x

  • x

  • nx


30.

C315 + C515 + ... + C1515 will be equal to

  • 214

  • 214 - 15

  • 214 + 15

  • 214 - 1


Advertisement