Sum of the last 30 coefficients in the expansion of (1 + x)59 , when expanded in ascending power of x is
259
258
230
229
If (1 - x + x2)n = a0 + a1x + ... + a2nx2n, then the value of a0 + a2 + a4 + ... + a2n is
D.
Given,(1 - x + x2)n = a0 +a1x +...+ a2nx2n ... (i)
x = 1, then from Eq. (i)
1 = a0 + a1 + ... + a2n ... (ii)
and if x = - 1, then from Eq. (i)
3n = a0 - a1 + a2 - a3 ...+ a2n ...(iii)
Adding Eqs. (ii) and (iii)
1 + 3n = 2[a0 + a2 + a4 + ... + a2n]
Thus, (1 + 3n)/2 = [a0 + a2 + a4 + ... + a2n]
If C0, C1, C2, ..., Cn denote the coefficients in the expansion of (1 + x)n, then the value of C1 + 2C2 + 3C3 + ... + nCn is
n . 2n - 1
(n + 1)2n - 1
(n + 1)2n
(n + 2)2n - 1
If the coefficients of x2 and x3 in the expansion of (3 + ax)9 be same, then the value of 'a' is
3/7
7/3
7/9
9/7
Using binomial theorem, the value of (0.999)3 correct to 3 decimal places is
0.999
0.998
0.997
0.995
Show that, for a positive integer n, the coefficient of xk, () in the expansion of 1 + (1 + x) + (1 + x) + ... + (1 + x)n is