The binomial coefficients which are in decreasing order are
15C5, 15C6, 15C7,
15C10 , 15C9 , 15C8
15C6 , 15C7 , 15C8
15C7 , 15C6 , 15C5
If x - 4x2 -5x + 6 can be expanded in the ascending power of x, then the coefficient of x3 is
- 73648
73648
71648
- 71648
Coefficient of x10 in the expansion of (2 + 3x)e- x is
- 2610!
- 2810!
- 3010!
- 3210!
If (1 + x)15 = a0 + a1x + ... + a15x15, then ∑r = 115rarar - 1 is equal to
110
115
120
135
The coefficient of x3y4z5 in the expansion of (xy + yz + xz)6 is
70
60
50
None of these
If x < 12, then the coefficient of xr in the expansion of 1 + 2x1 - 2x2, is
r2r
(2r - 1)2r
r22r + 1
(2r + 1)2r
D.
1 + 2x1 - 2x2 = 1 + 2x1 - 2x- 2= 1 + 2x1 + 21!2x + 2 32! + ... + 2 3 ... rr - 1!2xr - 1 + 2 . 3 . 4 ... r + 12xrr!
The coefficient of xr
= 2r!r - 1!2r - 1 + r + 1!r!2r= r2r + r + 12r = 2r2r + 1
The coefficient of xn in 1 - 2xex is :
1 + 2nn!
- 1n1 + 2nn!
- 1n1 - 2nn!
- 1n1 + 4nn!
If ak is the coefficient of xk in the expansion of 1 + x + x2n for k = 0, 1, 2, . . , 2n, then
- a0
3n
n 3n + 1
n 3n
The coefficient of xk in the expansion of 1 - 2x - x2e- x is
1 - k - k2k!
k2 + 1k!
1 - kk!
1k!
The coefficient of x24 in the expansion of (1 + x2)12(1 + x12)(1 + x24) is
C612
C612 + 2
C612 + 4
C612 + 6