The binomial coefficients which are in decreasing order are
15C5, 15C6, 15C7,
15C10 , 15C9 , 15C8
15C6 , 15C7 , 15C8
15C7 , 15C6 , 15C5
If x - 4x2 -5x + 6 can be expanded in the ascending power of x, then the coefficient of x3 is
- 73648
73648
71648
- 71648
Coefficient of x10 in the expansion of (2 + 3x)e- x is
- 2610!
- 2810!
- 3010!
- 3210!
If (1 + x)15 = a0 + a1x + ... + a15x15, then ∑r = 115rarar - 1 is equal to
110
115
120
135
The coefficient of x3y4z5 in the expansion of (xy + yz + xz)6 is
70
60
50
None of these
If x < 12, then the coefficient of xr in the expansion of 1 + 2x1 - 2x2, is
r2r
(2r - 1)2r
r22r + 1
(2r + 1)2r
The coefficient of xn in 1 - 2xex is :
1 + 2nn!
- 1n1 + 2nn!
- 1n1 - 2nn!
- 1n1 + 4nn!
If ak is the coefficient of xk in the expansion of 1 + x + x2n for k = 0, 1, 2, . . , 2n, then
- a0
3n
n 3n + 1
n 3n
The coefficient of xk in the expansion of 1 - 2x - x2e- x is
1 - k - k2k!
k2 + 1k!
1 - kk!
1k!
A.
We have, 1 - 2x - x2e- x= 1 - 2x - x2ex= 1 - 2x - x21 + x + x22! + x33! + ... + xkk! + ... ∞= 1 + x + x22! + x33! + ... + xkk! + ... ∞ - 2x + x2 + x32! + ... + xkk - 1! + xk + 1k! + ... ∞ - x2 + x3 + x42! + ... + xkk - 2! + xk + 1k - 1! + xk + 2k! + ... ∞∴ Coefficient of xk in 1 - 2x - x2e- x= 1k! - 2k - 1! - 1k - 2!= 1k! - 2kk - 1! - kk - 1kk - 1k - 2!= 1k! - 2kk! - kk - 1k!= 1 - k - k2k!
The coefficient of x24 in the expansion of (1 + x2)12(1 + x12)(1 + x24) is
C612
C612 + 2
C612 + 4
C612 + 6