Let α and β be the distinct roots of ax2 + bx + c = 0, then �

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

31.

Let α and β be the distinct roots of ax2 + bx + c = 0, then limit as straight x rightwards arrow straight alpha of space fraction numerator 1 minus cos space left parenthesis ax squared plus bx plus space straight c right parenthesis over denominator left parenthesis straight x minus straight alpha right parenthesis squared end fraction space is equal to

  • straight a squared over 2 left parenthesis straight alpha minus straight beta right parenthesis squared
  • 0

  • negative straight a squared over 2 left parenthesis straight alpha minus straight beta right parenthesis squared
  • negative straight a squared over 2 left parenthesis straight alpha minus straight beta right parenthesis squared


A.

straight a squared over 2 left parenthesis straight alpha minus straight beta right parenthesis squared
limit as straight x rightwards arrow straight alpha of space fraction numerator 1 minus cos space straight a space left parenthesis straight x minus straight alpha right parenthesis left parenthesis straight x minus straight beta right parenthesis over denominator left parenthesis straight x minus straight alpha right parenthesis squared end fraction space
space equals space limit as straight x rightwards arrow straight alpha of fraction numerator 2 space sin squared space open parentheses straight a begin display style fraction numerator left parenthesis straight x minus straight alpha right parenthesis left parenthesis straight x minus straight beta right parenthesis over denominator 2 end fraction end style close parentheses over denominator left parenthesis straight x minus straight alpha right parenthesis squared end fraction
space equals space limit as straight x rightwards arrow straight alpha of space fraction numerator 2 over denominator left parenthesis straight x minus straight alpha right parenthesis squared end fraction space straight x fraction numerator begin display style sin squared end style begin display style space end style begin display style open parentheses straight a fraction numerator left parenthesis straight x minus straight alpha right parenthesis left parenthesis straight x minus straight beta right parenthesis over denominator 2 end fraction close parentheses end style over denominator begin display style fraction numerator straight a squared space left parenthesis straight x minus straight alpha right parenthesis squared left parenthesis straight x minus straight beta right parenthesis squared over denominator 4 end fraction end style end fraction space straight x space fraction numerator straight a squared space left parenthesis straight x minus straight alpha right parenthesis squared left parenthesis straight x minus straight beta right parenthesis squared over denominator 4 end fraction
space equals space fraction numerator straight a squared left parenthesis straight alpha minus straight beta right parenthesis squared over denominator 2 end fraction
100 Views

Advertisement
32.

If x is so small that x3 and higher powers of x may be neglected, then fraction numerator left parenthesis 1 plus straight x right parenthesis to the power of 3 divided by 2 end exponent space minus open parentheses 1 plus begin display style 1 half end style straight x close parentheses cubed over denominator left parenthesis 1 minus straight x right parenthesis to the power of 1 divided by 2 end exponent end fraction spacemay be approximated as

  • 1 minus 3 over 8 straight x squared
  • 3 x 6 plus 3 over 8 straight x squared
  • negative 3 over 8 straight x squared
  • negative 3 over 8 straight x squared
227 Views

33.

If both the roots of the quadratic equation x2 – 2kx + k2 + k – 5 = 0 are less than 5, then k lies in the interval

  • (5, 6]

  • (6, ∞)

  • (-∞, 4)

  • (-∞, 4)

418 Views

34.

If the equation anxn +an-1xn-1 +....... +a1x =0, a1 ≠ 0, n≥2, has a positive root x =  α, then the equation nanxn-1 + (n-1)an-1xn-2 +......+a1 = 0 has a positive root, which is

  • greater than α

  • smaller than α

  • greater than or equal to α

  • greater than or equal to α

152 Views

Advertisement
35.

Let z, w be complex numbers such that z iw + = 0 and arg zw = π. Then arg z equals

  • Ï€/4

  • 5Ï€/4

  • 3Ï€/4

  • 3Ï€/4

956 Views

36.

If z = x – i y and z1/3 = p+ iq , then fraction numerator begin display style open parentheses straight x over straight p plus straight y over straight q close parentheses end style over denominator left parenthesis straight p squared plus straight q squared right parenthesis end fraction is equal to 

  • 1

  • -2

  • 2

  • 2

421 Views

37.

If (1 – p) is a root of quadratic equation x2 +px + (1-p)=0 , then its roots are

  • 0, 1

  • -1, 2

  • 0, -1

  • 0, -1

190 Views

38.

If one root of the equation x2+px+12 =0 is 4, while the equation x2 +px +q = 0 has equal roots, then the value of 'q' is

  • 49/3

  • 4

  • 3

  • 3

160 Views

Advertisement
39.

The coefficient of xn in expansion of (1+x)(1-x)n is

  • (n-1)

  • (-1)n(1-n)

  • (-1)n-1(n-1)2

  • (-1)n-1(n-1)2

157 Views

40.

If 2a + 3b + 6c =0, then at least one root of the equation ax2 + bx+ c = 0  lies in the interval

  • (0,1)

  • (1,2)

  • (2,3)

  • (2,3)

203 Views

Advertisement