If α, β, γ are the 

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

211.

If z1, z2 are two complex numbers satisfying z1 - 3z23 - z1z2 = 1, z1  3, then z2 is equal to

  • 1

  • 2

  • 3

  • 4


212.

The value of n = 02i3n is

  • 9 + 6i13

  • 9 - 6i13

  • 9 + 6i

  • 9 - 6i


213.

The roots of the equation x - 3x - 2 = 0 are

  • - 1, - 1, 2

  • - 1, 1, - 2

  • - 1, 2, - 3

  • - 1, - 1, - 2


214.

If α, β, γ are the roots of x3 + 2x2 - 3x - 1 = 0 then α- 2 + β- 2 + γ- 2 = 

  • 12

  • 13

  • 14

  • 15


Advertisement
215.

If α1, α2, α3 respectively denote the moduli of the complex number - i, 13(1 + i) and - 1 + i, 3 then their increasing order is

  • α1, α2, α3

  • α3, α2, α1

  • α2, α1, α3

  • α3, α1, α2


216.

If α is a  non-real root of x6 = 1, then α5 + α3  + α + 1α2 + 1 is equal to,

  • α2

  • 0

  • - α2

  • α


217.

The difference between two roots of the equation x3 - 13x2 + 15x + 189 = 0 is 2. Then  the roots of the equation are :

  • - 3, 5, 7

  • - 3, - 7, - 9

  • 3, - 5, 7

  • - 3, - 7, 9


Advertisement

218.

If α, β, γ are the roots of the equation x3 - 6x2 + 11x + 6 = 0,then  α2β + αβ2 is equal to:

  • 80

  • 84

  • 90

  • - 84


B.

84

 α, β, γ are the roots of the equation x3 - 6x2 + 11x + 6 = 0.                α + β + γ = 6          αβ + βγ + γα = 11and                     αβγ = - 6Now  α2β + αβ2  = α2β + β2γ + γ2α + αβ2  +βγ2 + γα2                                     = αβα + β  +βγβ + γ + γαγ + α                                     = αβ6 - γ  +βγ6 - α + γα6 - β                                     = 6αβ + βγ + γα - 3αβγ                                     = 611 + 36                                     = 66 + 18 = 84


Advertisement
Advertisement
219.

The locus of the point z = x + iy satisfying the equation

z - 1z + 1 = 1 is given by :

  • x = 0

  • y = 0

  • x = y

  • x + y = 0


220.

The equation of the locus of z such that z + iz - i = 2, where z= x + iy is a complex number, is

  • 3x2 + 3y2 + 10y - 3 = 0

  • 3x2 + 3y2 + 10y + 3 = 0

  • 3x2 - 3y2 - 10y - 3 = 0

  • x2 + y2 - 5y + 3 = 0


Advertisement