If α and β are the roots of the equatio

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

251.

1 +i20111 - i2009 = ?

  • - 1

  • 1

  • 2

  • - 2


252.

In PQR,  R = π4, tanP3, tanQ3 are the roots of the equation ax2 + bx + c = 0, then

  • a +b = c

  • b + c = 0

  • a + c = 0

  • b = c


253.

The product of real of the equation x65 - 26x35 - 27 = 0

  • - 310

  • - 312

  • - 312/5

  • - 312/5


254.

If α, β, γ are the roots of the equation x3 + px2 + qx + r = 0, then the coefficient of x in the cubic equation whose roots are αβ + γ, βγ + α and γα + β is 

  • 2q

  • q2 + pr

  • p2 - qr

  • r(pq - r)


Advertisement
255.

If z is complex number such that z - 4z = 2, then the greatest value of z is

  • 1 + 2

  • 2

  • 3 + 1

  • 1 + 5


256.

If α is a  non-real root of the equation x6 - 1 = 0,then α2 + α3  + α4 + α5α + 1 = ?

  • α

  • 1

  • 0

  • - 1


Advertisement

257.

If α and β are the roots of the equation x2 - 2x + 4 = 0, then α9 + β9 is equal to

  • - 28

  • 29

  • - 210

  • 210


C.

- 210

Given quadratic equation isx2 - 2x + 4 = 0whose roots are α and β α + β = 2 and αβ = 4  ...iNow, α9 + β9 = α33 + β33 = α3 + β3α6 + β6 - α3β3= α + βα2 - αβ + β2α23 + β23 - α3β3=  α + β α + β2 - 3αβ α2 + β2α4 + β4 - α2β2 -  α3β3=  α + β α + β2 - 3αβα + β2 - 2αβα2 + β22 - 3α2β2 - α3β3= 24 - 124 - 84 - 82 - 48 - 64    from eq i= 2 - 8 - 4 - 32 - 64= 2 - 8128 - 64= 2 - 864 = - 210


Advertisement
258.

If a complex number z satisfied z2 - 1 = z2 + 1, then z lies on

  • the real axis

  • the imaginary axis

  • y = x

  • a circle


Advertisement
259.

The number of solutions for z3 + z = 0 , is

  • 5

  • 1

  • 3

  • 2


260.

If x = p + q, y =  + 2 and z = 2 + , where is a complex cube root of unity, then xyz equals to

  • p3 + q3

  • p3 - pq + q3

  • 1 + p3 + q3

  • p3 - q3


Advertisement