If a complex number z satisfied z2 - 1 = 

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

251.

1 +i20111 - i2009 = ?

  • - 1

  • 1

  • 2

  • - 2


252.

In PQR,  R = π4, tanP3, tanQ3 are the roots of the equation ax2 + bx + c = 0, then

  • a +b = c

  • b + c = 0

  • a + c = 0

  • b = c


253.

The product of real of the equation x65 - 26x35 - 27 = 0

  • - 310

  • - 312

  • - 312/5

  • - 312/5


254.

If α, β, γ are the roots of the equation x3 + px2 + qx + r = 0, then the coefficient of x in the cubic equation whose roots are αβ + γ, βγ + α and γα + β is 

  • 2q

  • q2 + pr

  • p2 - qr

  • r(pq - r)


Advertisement
255.

If z is complex number such that z - 4z = 2, then the greatest value of z is

  • 1 + 2

  • 2

  • 3 + 1

  • 1 + 5


256.

If α is a  non-real root of the equation x6 - 1 = 0,then α2 + α3  + α4 + α5α + 1 = ?

  • α

  • 1

  • 0

  • - 1


257.

If α and β are the roots of the equation x2 - 2x + 4 = 0, then α9 + β9 is equal to

  • - 28

  • 29

  • - 210

  • 210


Advertisement

258.

If a complex number z satisfied z2 - 1 = z2 + 1, then z lies on

  • the real axis

  • the imaginary axis

  • y = x

  • a circle


B.

the imaginary axis

Given, z2 - 1 = z2 + 1Let z = x + iy x + iy2 - 1 = x + iy2 + 1 x2 - y2 + 2ixy - 1 = x2 + y2 + 1 x2 - y2 - 12 + 4x2y2 = x2 + y2 + 1 x2 - y22 + 1 - 2x2 - y2 + 4x2y2= x2 + y2 + 12= x4 + y4 + 2x2y2 +1 + 2x2 +2y2 - 2x2y2 - 2x2 +4x2y2 = 2x2y2 + 2x2 - 2x2 = 2x2 4x2 = 0  x = 0 z = x + iy = 0 + iy z = iy  x, y = 0, yHence, z lies on the imaginary axis


Advertisement
Advertisement
259.

The number of solutions for z3 + z = 0 , is

  • 5

  • 1

  • 3

  • 2


260.

If x = p + q, y =  + 2 and z = 2 + , where is a complex cube root of unity, then xyz equals to

  • p3 + q3

  • p3 - pq + q3

  • 1 + p3 + q3

  • p3 - q3


Advertisement