The polar equation cosθ + 7sinθ =

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

291.

If P1, P2, P3 are the perimeters of the three circles 

x2 + y2 + 8x - 6y = 0, 4x2 + 4y - 4x - 12y - 186 = 0 and x2 + y - 6x + 6y - 9 = 0 respectively, then

  • P1 <  P2  <  P3

  • P1 <  P3  <  P2

  • P3 <  P2  <  P1

  • P2 <  P3  <  P1


292.

If the line 3x - 2y + 6 = 0 meets X-axis and Y-axis, respectively at A and B, then the equation of the circle with radius AB and centre at A is

  • x2 + y2 + 4x + 9 = 0

  • x2 + y2 + 4x - 9 = 0

  • x2 + y2 + 4x + 4 = 0

  • x2 + y2 + 4x - 4 = 0


293.

A line l meets the circle x2 + y2 = 61 in A, B and P(- 5, 6) is such that PA = PB = 10. Then,the equation of l is

  • 5x + 6y + 11 = 0

  • 5x - 6y - 11 = 0

  • 5x - 6y + 11 = 0

  • 5x - 6y + 11 = 0


294.

If (1, a), (b, 2) are conjugate points with respect to the circle x2 + y2 = 25, then 4a + 2b is equal to

  • 25

  • 50

  • 100

  • 150


Advertisement
295.

The eccentricity of the conic 36x2 + 144y2 - 36x - 96y -119 = 0 is

  • 32

  • 12

  • 34

  • 13


Advertisement

296.

The polar equation cosθ + 7sinθ = 1r represents a

  • circle

  • parabola

  • straight line

  • hyperbola


C.

straight line

Polar equation is,cosθ + 7sinθ = 1r rcosθ + 7rsinθ = 1Put x = rcosθ, y = rsinθ, we get x + 7y = 1This is the equation of straight line.


Advertisement
297.

The centre of the circle r2 - 4rcosθ + sinθ - 4 = 0 in cartesian coordinates is

  • (1, 1)

  • (- 1, - 1)

  • (2, 2)

  • (- 2, - 2)


298.

The radius of the circle r = 3sinθ + cosθ is

  • 1

  • 2

  • 3

  • 4


Advertisement
299.

The equation of the circle whose diameter is the common chord of the circles x2 + y2 + 2x + 3y + 2 = 0 and x2 + y2 + 2x - 3y - 4 = 0 is

  • x2 + y2 + 2x + 2y + 2 = 0

  • x2 + y2 + 2x + 2y - 1 = 0

  • x2 + y2 + 2x + 2y + 1 = 0

  • x2 + y2 + 2x + 2y + 3 = 0


300.

If x - y + 1 = 0 meets the circlex2 + y2 + y - 1 = 0 at A and B, then the equation of the circle with AB as diameter is

  • 2(x2 + y2) + 3x - y + 1 = 0

  • 2 (x2 + y2) + 3x - y + 2 = 0

  • 2(x2 + y2) + 3x - y + 3 = 0

  • x2 + y2 + 3x - y + 1 = 0


Advertisement