x2 + y2 - 8x + 40 = 05x2&

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

331.
The equation of the circle which passes through the origin and cuts orthagonally each of the circles x2 + y2 - 6x + 8 = 0 and x2 + y2 - 2x - 2y = 7 is
  • 3x2 + 3y2 - 8x - 13y = 0

  • 3x2 + 3y2 - 8x + 29y = 0

  • 3x2 + 3y2 + 8x + 29y = 0

  • 3x2 + 3y2 - 8x - 29y = 0


332.

The number of normals drawn to the parabola y2 = 4x from the point (1, 0) is

  • 0

  • 1

  • 2

  • 3


333.

If the distance between foci of an ellipse is 6 and the length of the minor axis is 8, then the eccentricity is

  • 15

  • 12

  • 35

  • 45


334.

If the circle x2 + y2 = a2 intersects the hyperbola xy = c2 in four points (xi, yi), for i = 1, 2, 3 and 4, then y1 + y2 + y3 + y4 equals

  • 0

  • c

  • a

  • c4


Advertisement
335.

The mid point of the chord 4x - 3y = 5 of the hyperbola 2x2 - 3y2 = 12 is

  • 0, - 53

  • (2, 1)

  • 54, 0

  • 114, 2


336.

The eccentricity of conic5r = 2 +3cosθ + 4sinθ is

  • 12

  • 1

  • 32

  • 52


337.

The radius of the sphere x2 + y2 + z2 = 12x + 4y +3z is

  • 132

  • 13

  • 26

  • 52


338.

The equation of the radical axis of the pair of circles  7x2 + 7y2 - 7x + 14y + 18 = 0  and 4x2 + 4y2 - 7x + 8y + 20 = 0 is

  • x - 2y - 5 = 0

  • 2x - y + 5 = 0

  • 21x - 68 = 0

  • 23x - 68 = 0


Advertisement
Advertisement

339.

x2 + y2 - 8x + 40 = 05x2 + 5y2 -25x + 80 = 0x2 + y2 - 8x + 16y + 160 = 0From the point P are equal, then P = ?

  • 8, 152

  • - 8, 152

  • 8, - 152

  • - 8, - 152


C.

8, - 152

Let Px1, y1 be the point from which the tangents are drawn to the circlesS1 = x2 + y2 - 8x + 40 = 0S2 = 5x2 + 5y2 -25x + 80 = 0S3 = x2 + y2 - 8x + 16y + 160 = 0Since, the length of the tangent from P to the circles S1, S2, S3 are equal S1 = S2 = S3  S1 = S2 = S3x12 + y12 - 8x1 + 40 = 5x12 + 5x22 - 25x1 + 80                                      = x12 +  y12 - 8x1 + 16y1 +160 = 0     . . . iTakin first and second part of above relation i, we get- 40 + 16y1 + 160 = 016y1 + 120 = 0y1 = - 12016  - 152Taking first and second part of the relation i- 3x1 + 24 = 0x1 = 243  x1 = 8Hence, the point P is 8, - 152


Advertisement
340.

The equation of the circle concentric with the circle x2 + y2 - 6x + 12y + 15 = 0 and of double its area is

  • x2 + y2 - 6x +12y - 15 = 0

  • x2 + y2 - 6x +12y - 30 = 0

  • x2 + y2 - 6x +12y - 25 = 0

  • x2 + y2 - 6x +12y - 20 = 0


Advertisement