The equation of the common tangent drawn to the curves y = 8x and

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

401.

The distance between the focii of the ellipse
x = 3cosθ, y = 4sinθ is

  • 27

  • 72

  • 7

  • 37


402.

The equations of the latus rectum of the ellipse
9x2 + 25y2 - 36x + 50y - 164 = 0 are

  • x - 4 = 0, x + 2 = 0

  • x - 6 = 0, x + 2 = 0

  • x + 6 = 0, x - 2 = 0

  • x + 4 = 0, x + 5 = 0


403.

The values of m for which the line y = mx + 2
becomes a tangent to the hyperbola 4x2 - 9y2 = 36 is

  • ± 23

  • ± 223

  • ± 89

  • ± 423


Advertisement

404.

The equation of the common tangent drawn to the curves y = 8x and xy = - 1 is

  • y = 2x + 1

  • 2y = x + 6

  • y = x + 2

  • 3y = 8x + 2


C.

y = x + 2

Let Pt,  - 1t be a point on xy = - 1Equation of tangent at P is 12X - 1t + ty = - 1- x + t2y = - 2t y = - xt2 + 2t is also at tangent of y2 = 8x, ie.c = am 2t = 21t2 t3 = 1   t = 1Hence, the equation common tangent isy = x + 2


Advertisement
Advertisement
405.

The area included between the parabola y = x24a and the curve y = 8a3x2 + 4a2 is

  • a22π + 23

  • a22π - 83

  • a2π + 43

  • a22π - 43


406.

If a circle with radius 2.5 units passes through the points (2, 3) and (5, 7), then its centre is

  • (1 5, 2)

  • (7, 10)

  • (3, 4)

  • (3 5, 5)


407.

The circumcentre of the triangle formed by the points (1, 2, 3) (3, - 1, 5), (4, 0, - 3) is

  • (1, 1, 1)

  • (2, 2, 2)

  • (3, 3, 3)

  • 72,  - 12, 1


408.

The lines y = 2x + 76 and 2y + x = 8 touch the ellipse x2 + y= 1. If the point of x216 + y212 = 1 intersection of these two lines lie on a circle, whose centre coincides with the centre of that ellipse, then the equation of that circle is

  • x2 + y2 = 28

  • x2 + y2 = 12

  • x2 + y2 = 12

  • x2 + y2 = 4 + 82


Advertisement
409.

If lx + my = 1 is a normal to the hyperbola x2a2 - y2b2 = 1, then a2m2 - b2l2 = ?

  • m2l2a2 + b22

  • l2 + m2(a2 + b2)2

  • l2m2a2 + b22

  • l2m2(a2 + b2)2


410.

x - 13x + 4 < x - 33x - 2 holds, for all x in the internal

  •  - 43, 23

  • ,  - 54

  • 33, 

  •  - ,  - 54  34, - 


Advertisement