∫- aaxa2 - x2dx is equal to
π4
π3
π8
0
If y = tan-11 - cosx1 + cosx, then dydx will be
sinxcosx
π2
12
11 + cos2x
The value of limx→11 - x . tanπx2 will be
2π
π
Let f(x) = x2 - 4x + 3x2 + 2x - 3, x ≠ 1k , x = 1 If f(x) is continuous at x = 1, then the value of k will be
1
- 1
- 12
Let f(x) = xn . sin1x, x ≠ 00 , x = 0 Then, f(x) is differentiable at x = 0, if
n ∈ 0, 1
n ∈ 1, 2
n ∈ 1, ∞
n ∈ - ∞, ∞
In which interval the function fx = log105x - x24 is defined ?
[1, 4]
[0, 5)
(0, 1)
(- 1, ∞)
limx→0x . 2x - x1 - cosx equals
log2
12log2
2log2
None of these
Let f(2) = 4 and f'(2)= 1. Then, limx→2xf2 - 2fxx - 2 is given by
2
- 2
- 4
3
If y = logsinxtanx, then dydxπ4 is equal to
4log2
- 4log2
If y = logexx - 22 for x ≠ 0, 2, then y'(3) is equal to
13
23
43