. Then
f(x) is continuous at x = 1
f(x) is not continuous at x = 1
f(x) is differentiable at x = 1
f(x) is not differentiable at x = 1
If f(x) =
then
does not exist
f is not continuous at x = 2
f is continuous but not differentiable at x = 2
f is continuous and differentiable at x = 2
C.
f is continuous but not differentiable at x = 2
and f(2) = (2)3 - 6(2)2 + 9(2) + 2
= 8 - 24 + 18 + 2
= 4
LHL = RHL = f(2)
So, f(x) is continuous at x = 2
Thus, f(x) is not differentiable at x = 2
Hence, f is continuous but not differentiable at x = 2.
If f is a real-valued differentiable function such that f(x)f' (x) < 0 for all real x, then
f(x) must be an increasing function
f(x) must be a decreasing function
must be an increasing function
must be a decreasing function
Rolle's theorem is applicable in the interval [- 2, 2] for the function
f(x) = x3
f(x) = 4x4
f(x) = 2x3 + 3
f(x) =
If f(x) and g(x) are twice differentiable functions on (0, 3) satisfying f"(x) = g''(c), f'(1) = 4g'(D) = 6, f(2) = 3, g(2) = 9, then f(1) - g(1) is
4
- 4
0
- 2
For function , Rolle's theorem is
applicable, when
applicable, when
applicable, when
applicable, when
f(x) = the function f(x) is
increasing when x
strictly increasing when x > 0
strictly increasing at x = 0
not continuous at x = 0 and so it is not increasing when x > 0