For what values of x, the function f(x) = x4 - 4x3 + 4x2 + 40 is monotonic decreasing ?
0 < x < 1
1 < x < 2
2 < x < 3
4 < x < 5
B.
1 < x < 2
Given, f(x) = x4 - 4x3 + 4x2 + 40
f'(x) = 4x(x - 1)(x - 2)
∴ x is decreasing for x ∈ (1, 2).
If x2 + y2 = 1, then
yy'' - (2y')2 + 1 = 0
yy'' + (y')2 + 1 = 0
yy'' - (y')2 - 1 = 0
yy'' + 2(y')2 + 1 = 0
The Rolle's theorem is applicable in the interval
f(x) = x
f(x) = x2
f(x) = 2x3 + 3
f(x) =