Let f be continuous on [1, 5] and differentiable in (1, 5). If f

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

161.

If y = 2x . 32x - 1, then d2ydx2 is equal to :

  • log2log3

  • log18

  • log182y2

  • log18y


162.

If y = x + x2 + x3 + ... to  where x < 1, then for y < 1dxdy is equal to :

  • y + y2 + y3 + ... to 

  • 1 - y + y2 - y3 + ... to 

  • 1 - 2y + 3y- ... to 

  • 1 + 2y + 3y2 + ... to 


163.

If y = sinx + sinx + sinx + ... , then dydx is equal to :

  • cosx2y - 1

  • - cosx2y - 1

  • sinx1 - 2y

  • - sinx1 - 2y


164.

Given f(0) = 0 and f(x) = 11 - e- 1x for x  0. Then only one of the following statements on f (x) is true. That is f(x), is :

  • continuous at x = 0

  • not continuous at x = 0

  • both continuous and differentiable at x = 0

  • not defined at x = 0


Advertisement
165.

The value of f at x = 0 so that function fx = 2x - 2- xx, x  0.  is continuous at x = 0, is :

  • 0

  • log(2)

  • 4

  • log(4)


166.

If y = ax . b2x - 1, then d2ydx2 is :

  • y2 . logab2

  • y . logab2

  • y2

  • y . logab22


167.

The value of ddxtan-1x3 - x1 - 3x is

  • 121 + xx

  • 321 + xx

  • 21 + xx

  • 321 + xx


168.

The derivative of y = (1 - x)(2 - x) ... (n - x) at x = 1 is equal to :

  • 0

  • (- 1)(n - 1)!

  • n! - 1

  • (- 1)n - 1(n - 1)!


Advertisement
169.

Let f(x + y) = f(x)f(y) and f(x) = 1 + sin(3x) g(x), where g(x) is continuous, then f'(x) is : 

  • f(x)g(0)

  • 3g(0)

  • f(x)cos3x

  • 3f(x)g(0)


Advertisement

170.

Let f be continuous on [1, 5] and differentiable in (1, 5). If f (1) = - 3 and f'(x) 9 for all x  (1, 5), then

  • f5  33

  • f5  36

  • f5  36

  • f5  9


A.

f5  33

By Lagrange mean value theorem,

f'x = f5 - f15 - 1  9 f5 + 34  9 f5  36 - 3  f5  33


Advertisement
Advertisement